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Preface

The theory of neutron stars, which along with white dwarfs and black holes
form the family of astrophysical compact objects, involves an intimate interplay
between diverse branches of theoretical physics. It covers a range from the theory
of microscopic nuclear forces to general relativistic gravity, from the particle
physics of the radiation of light and neutrinos to the low-temperature physics
of superfluids, from the solid-state physics of highly compressed matter to the
atomic physics in ultra-high magnetic fields. Hardly in any other physical context
do all the forces of nature – the electroweak, strong, and gravitational – emerge
as equally important ingredients in the physical picture. It is this diversity of
fields and the uniqueness of their interplay that makes the study of neutron stars
both exciting and challenging.

The idea of neutron stars has it roots in the 1930s when it was realized that
self-gravitating matter can support itself against gravitational contraction by
the degeneracy pressure of fermions obeying the Pauli principle. Thus, unlike
ordinary stars, which are stabilized by their thermal pressure, neutron stars
owe their very existence to the quantum nature of matter. When this idea was
combined with the newly developed theory of general relativity neutron stars
were born – in theory. It was not until 1967, when the remarkable discovery of
pulsars by J. Bell and A. Hewish gave a second birth to neutron stars, that their
observational studies became a reality.

The past four decades have seen a dramatic increase in the theoretical activity
in this field. Many factors have contributed to the progress. On the observational
front the discoveries of neutron stars in X-ray binaries, millisecond pulsars, bi-
nary pulsars, and highly magnetized neutron stars (magnetars) have opened new
channels of information on these objects. Then, too, the exploration of the na-
ture of interactions among the strongly and weakly interacting constituents of
matter at terrestrial accelerators impacted on our conception of superdense mat-
ter, its strangeness content, the quark degrees of freedom, phase transitions and
reactions involving neutrinos. Another factor is the increase in computational
capabilities.

This book is a collection of lectures given at the ECT∗ (European Centre
for Theoretical Studies in Nuclear Physics and Related Areas) in June and July
2000 and covers the theory of neutron star interiors at the forefront of active
research. It includes reviews of the traditional material (e.g. the equation of state
of superdense matter, the thermal evolution) and, as well, it contains lectures



VI Preface

on new issues, for example the recent developments in QCD at finite density,
and the possible astrophysical manifestations of the QCD deconfinement phase
transition. The choice of topics included in this book was selective. Clearly it
is not possible to cover all the current problems of neutron star theory in a
single volume; we have provided a list of monographs on the subject for further
reference. Naturally enough, the level of presentation throughout the book is
uneven; nevertheless, these pedagogical lectures are intermediate between what
can be found in the standard texts on the subject and the current research
literature; they should be a useful guide to those who wish to enter the field and
to those who are actively working in the field.

Acknowledgements The editors of this volume express their appreciation for
the support and facilities of the ECT∗ at Trento, Italy, and to its former Director,
Rudi Malfliet, for his hearty encouragement of the workshop in the summer of
2000 from which this volume was conceived.

Rostock, Berkeley, Paris David Blaschke
January 2001 Norman K. Glendenning

Armen Sedrakian
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Microscopic Theory of the Nuclear Equation
of State and Neutron Star Structure

Marcello Baldo and Fiorella Burgio

Istituto Nazionale di Fisica Nucleare, Sez. Catania, and Universitá di Catania,
Corso Italia 57, 95129 Catania, Italy

Abstract. The Bethe-Brueckner-Goldstone many-body theory of the Nuclear Equa-
tion of State is reviewed in some details. In the theory, one performs an expansion in
terms of the Brueckner two-body scattering matrix and an ordering of the correspond-
ing many-body diagrams according to the number of their hole-lines. Recent results
are reported, both for symmetric and for pure neutron matter, based on realistic two-
nucleon interactions. It is shown that there is strong evidence of convergence in the
expansion. Once three-body forces are introduced, the phenomenological saturation
point is reproduced and the theory is applied to the study of neutron star properties.
One finds that in the interior of neutron stars the onset of hyperons strongly softens
the Nuclear Equation of State. As a consequence, the maximum mass of neutron stars
turns out to be at the lower limit of the present phenomenological observation.

1 Introduction

It is believed that macroscopic portions of (asymmetric) nuclear matter form the
interior bulk part of neutron stars, commonly associated with pulsars. Despite
the fact that infinite nuclear matter is obviously an idealized physical system, the
theoretical determination of the corresponding Equation of State is an essential
step towards the understanding of the physical properties of neutron stars. On
the other hand, the comparison of the theoretical predictions on neutron stars
with the experimental observations can provide serious constraints on the Nu-
clear Equation of State. Unfortunately, neutron stars are elusive astrophysical
objects, and only indirect observations of their structure, including their sizes
and masses, are possible. However, the astrophysics of neutron stars is rapidly
developing, in view of the observations coming from the new generation of arti-
ficial satellites, and one can expect that it will be possible in the near future to
confront the theoretical predictions with more and more stringent phenomeno-
logical data.

Heavy ion reactions is another field of research where the nuclear Equation
of State (EOS) is a relevant issue. In this case, the difficulty of extracting the
EOS is due to the complexity of the processes, since the interpretation of the
data is necessarily linked to the analysis of the reaction mechanism. An enor-
mous amount of work has been done in the last two decades in the field, but
clear indications about the main characteristics of the EOS have still to come.
Furthermore, the typical time scale of heavy ion reactions is enormously different
from the typical neutron star time scale, and this can prevent a direct link be-
tween the two field of research. In particular, nuclear matter inside neutron stars

D. Blaschke, N.K. Glendenning, and A. Sedrakian (Eds.): LNP 578, pp. 1–29, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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is completely catalyzed, namely it is quite close to the ground state, reachable
also by weak processes. In heavy ion reactions the evolution is too rapid to allow
weak processes to relax the system towards such a catalyzed state, and therefore
the tested Equation of State can differ from the neutron star one, especially at
high density.

On the theoretical side, the main general difficulty is the treatment of the
strong repulsive core, which dominates the short range behavior of the nucleon-
nucleon (NN) interaction, typical of the nuclear system, but which is common
to other systems like liquid helium. Simple perturbation theory cannot of course
be applied, since the matrix elements of the interaction are too large. One way
of overcoming this difficulty is to introduce the two-body scattering G-matrix,
which has a much smoother behavior even for strong repulsive core. It is possible
to rearrange the perturbation expansion in terms of the reaction G-matrix, in
place of the original bare NN interaction, and this procedure is systematically
exploited in the Bethe-Brueckner-Goldstone (BBG) expansion [1]. In this contri-
bution we present the latest results on the nuclear EOS based on BBG expansion
and their applications to the physics of neutron stars.

2 The BBG expansion and the nuclear EOS

The BBG expansion for the ground state energy at a given density, i.e. the EOS
at zero temperature, can be ordered according to the number of independent
hole-lines appearing in the diagrams representing the different terms of the ex-
pansion. This grouping of diagrams generates the so-called hole-line expansion
[2]. The smallness parameter of the expansion is assumed to be the “wound pa-
rameter” [2], roughly determined by the ratio between the core volume and the
volume per particle in the system. It gives an estimate of the decreasing factor
introduced by an additional hole-line in the diagram series. The parameter turns
out to be small enough up to 2-3 times nuclear matter saturation density. The
diagrams with a given number n of hole-lines are assumed to describe the main
contribution to the n-particle correlations in the system. At the two hole-line
level of approximation the corresponding summation of diagrams produces the
Brueckner-Hartree-Fock (BHF) approximation, which incorporates the two par-
ticle correlations. The BHF approximation includes the self-consistent procedure
of determining the single particle auxiliary potential, which is an essential ingre-
dient of the method. Once the auxiliary self-consistent potential is introduced,
the expansion is implemented by introducing the set of diagrams which include
“potential insertions”. To be specific, the introduction of the auxiliary potential
can be formally performed by splitting the Hamiltonian in a way which modified
from the usual one as

H = T + V = T + U + (V − U) ≡ H ′
0 + V ′ (1)

where T is the kinetic energy and V the nucleon-nucleon interaction. Then one
consider V ′ = V − U as the new interaction potential and H ′

0 as the new single
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particle hamiltonian. Then, the single particle energy e(k) is given by

e(k) =
�

2k2

2m
+ U(k) (2)

while U must be chosen in such a way that the new interaction V ′ is, in some
sense, “reduced” with respect to the original one V , so that the expansion in V ′

should be faster converging. The introduction of the auxiliary potential turns
out to be essential, otherwise the hole-expansion would be badly diverging. The
total energy E can then be written as

E =
∑

k

e(k) + B (3)

where B is the interaction energy due to V ′.
The BHF sums the so called “ladder diagrams”. Some of them are depicted in

Fig. 1. One has to consider this set of diagrams where one, two, three, and so one,
two-body interactions v appear, including exchange terms. Special care must be
used in counting correctly the diagrams which give the same contribution.

� � � � � � � � � � �

� � � � � � � � � � �

Fig. 1. Third and forth order ladder diagrams in the bare interaction (dashed lines)
and first order potential insertion (bottom).

The repeated action of the two-body potential v clearly describes the scattering
of two nucleons which lie above the Fermi sphere. The summation of the ladder
diagrams can be performed by solving the integral equation for the Brueckner
G-matrix

〈k1k2|G(ω)|k3k4〉= 〈k1k2|v|k3k4〉+

+
∑

k′
3k′

4
〈k1k2|v|k′

3k
′
4〉

(1−ΘF (k′
3))(1−ΘF (k′

4))
ω−ek′

3
−ek′

4

〈k′
3k

′
4|G(ω)|k3k4〉

(4)
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where ΘF (k) = 1 for k < kF and is zero otherwise, kF being the Fermi momen-
tum. The product Q(k, k′) = (1 − ΘF (k))(1 − ΘF (k′)), appearing in the kernel
of (4), enforces the scattered momenta to lie outside the Fermi sphere, and it is
commonly referred as the “Pauli operator”. This G-matrix can be viewed as the
in-medium scattering matrix between two nucleons. It has to be stressed that
the scattering G-matrix depends parametrically on the entry energy ω, namely
it is defined in general also off-shell, as the usual scattering matrix in vacuum.
The self-consistent single particle potential U(k) is determined by the equation

U(k) =
∑

k′<kF

〈kk′|G(ek1 + ek2)|kk′〉A (5)

with |kk′〉A = |kk′〉 − |kk′〉.
According to the definition of (2), (5) implies an implicit self-consistent proce-
dure.

Summing up the ladder diagrams to all orders, one then gets the two dia-
grams, direct and exchange, of Fig. 2, where a wavy lines indicates a Brueckner
G-matrix. Indeed, if one expands the G-matrix from (4), in terms of the bare
interaction v, and inserts the expansion in the diagrams of Fig. 2, one gets the
full sets of ladder diagrams, indicated in Fig. 1. More details on the rules for
writing down the explicit expression of the diagrams can be found in ref. [1].

k� k� k�

k�

Fig. 2. The two hole-line contribution in terms of the Brueckner G-matrix (wavy line).

The first potential insertion diagram, at the bottom of Fig. 1, cancels out the
potential part of the single particle energy of (2), in the expression for the total
energy E. This is actually true for any definition of the auxiliary potential U .
At the two hole-line level of approximation, one therefore gets

E =
∑

k<kF

�
2k2

2m + 1
2

∑
k,k′<kF

〈kk′|G(ek + ek′)|kk′〉A

≡∑k<kF

�
2k2

2m + 1
2

∑
k<kF

U(k)
(6)

where, in the last equality, the definition of (5) has been adopted. The result,
that only the unperturbed kinetic energy appears in the expression for E and
all the correlations are included in the potential energy part, holds true to all
orders and it is a peculiarity of the BBG expansion. Of course, the modification
of the momentum distribution, and therefore of the kinetic energy, is included
in the interaction energy part, but it is treated on the same footing as the other
correlation effects. This seems to present a noticeable advantage. In fact, the
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modification of the kinetic energy in itself is quite large and, of course, positive
and should be therefore compensate by an extremely accurate calculations of
the (negative) correlation energy. On the other hand, putting the two effects on
the same footing, one can expect that strong cancellation occur order by order.

Let us now discuss the choice of the single particle potential U . As it was
discussed in connection with (1), the potential U is in principle arbitrary, and it
is used only as a tool for speed up the convergence of the expansion. However,
physical considerations suggest the self-consistent procedure defined by (5) to
obtain the potential U . The self-consistency condition is clearly non-perturbative
and it is a generalization of the usual Hartree-Fock (HF) approximation, namely
the Brueckner G-matrix is used in place of the bare NN interaction v. For
nuclear matter the HF approximation would produce unrealistic results, because
of the strong repulsive core. The G-matrix takes into account the short range
correlations between pairs of nucleons, and therefore it gives a much improved
balance between attractive and repulsive contributions. The approximation of
(6), together with (2), (5), is usually referred to as the Brueckner-Hartree-Fock
(BHF) approximation. This definition of U corresponds to the diagrams of Fig. 3.

Fig. 3. The direct and exchange parts of the auxiliary potential U in terms of the
Brueckner G-matrix.

It has to be noticed that the G-matrix appearing in the diagrams are calculated
on-shell, according to (5), i.e. its entry energy is equal to the energy of the two
particles with the two entry momenta. Therefore the total energy at the BHF
level of approximation can be written also in terms of the potential U , as in the
second line of (6).

In the general BBG expansion, in all the higher order diagrams, beyond the
BHF approximation, the same definition of U is kept and the bare NN potential is
replaced by the G-matrix by performing the corresponding ladder sums whenever
it is possible. In this way the diagrammatic expansion is rearranged in terms of
the Brueckner G-matrix, in place of the bare NN interaction, with the only
obvious prescription that no ladder sums can now appear in the diagrams, in
order to avoid double counting.

We have seen that the ladder sum at the BHF level introduce on-shell G-
matrices only. This is not necessarily the case if the ladder sum is performed
inside a generic higher order energy diagram, since then the entry energy of the
resulting G-matrix depends in general on the rest of the diagrams. The energy
denominators appearing in the BBG expansion include, in fact, all the particle
and hole energies across the diagram. This point will be discuss later and we will
see that some exceptions to this expectation can occur.
Another strong reason in favor of keeping the BHF definition for the single
particle potential U in the general BBG expansion is the occurrence of cancel-
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lation between diagrams including three hole-lines, thus reducing the relevance
of higher order contributions. This is true for the two diagrams shown in Fig. 4.
The diagram (b) in the right side of the figure is a potential insertion diagram,
where the dashed line with the cross indicates a multiplication by a factor U(k),
k being the momentum of the hole-line to which the potential is attached. The
rule for writing down the potential insertion diagrams can also be found in ref.
[1]. The diagram (a) in the left side of Fig. 4 contains a G-matrix loop in place
of the potential U . If the G-matrix is on-shell,in view of the definition of (5) and
the graphical rules, one can easily see that the two diagrams cancel out exactly.

� a � � b �

Fig. 4. Lowest order three hole-line diagram (a) and the corresponding potential in-
sertion diagram (b).

At first site the G-matrix of diagram (a) should be not calculated on-shell.
However, it has been shown in ref. [3] that, if the ladder sums included in the
diagram contain bare interactions which appear in all possible positions along
the diagram, then their overall contribution reduces indeed to the diagram (a)
of Fig. 4, with the G-matrix calculated on-shell, and the above mentioned can-
cellation holds true.

The definition of (5) does not specify completely the single particle potential
U(k). For momenta k > kF the value of the potential U(k) does not appear ex-
plicitly in the energy expression of (6) at the BHF level. In old BHF calculations
the potential U(k) was then taken identically zero above the Fermi momentum,
with the justification that the interaction between particles above kF is expected
to be small and will, anyway, only slightly affecting the total energy. Within this
choice, usually referred to as “standard choice”, the potential has then a jump
at kF . For this reason it is also often called “gap choice”. Most modern BHF
calculations adopt a potential U(k) which is defined by extending the definition
of (5) also above kF , thus making U(k) continuous across the Fermi sphere. This
definition modifies the self-consistent equation and therefore also the potential
for k < kF . As a consequence, this different choice, usually called “continuous
choice”, modifies indirectly also the value of the BHF energy of (6). There are
some arguments in favor of the continuous choice. Since U(k) has the physical
meaning of single particle potential, it is intimately related to the single particle
self-energy. Indeed, one can show [4] that U(k) is the on-shell self energy to first
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order in the hole expansion. As such, the potential U(k) must be a continuous
function of the momentum. Another point to be considered is related to the two
other three hole-line diagrams depicted in Fig. 5. They can be obtained from
the diagrams of Fig. 4 just by attaching the intermediate G-matrix (diagram
a) and the potential U (diagram b) to the particle-line instead of the hole-line.
Diagram (a) is usually called the “bubble diagram”. In this case the G-matrix
is not calculated on-shell, since the argumentation of ref. [3] does not apply,
and no exact cancellation can occur between the two diagrams. Actually, in the
standard choice the potential insertion diagram b is identically zero, since for
this U(k) vanishes for k > kF . On the contrary, in the continuous choice, the
potential insertion diagram does not vanish, and some degree of cancellation
can be expected, despite the fact that the G-matrix is calculated off-shell, which
reduces, also in this case, the contribution from higher order diagrams.

� a � � b �

Fig. 5. Bubble three hole-line diagram (a) and the corresponding potential insertion
diagram (b)

At first sight it can be surprising that the final result for the nuclear matter
EOS could depend on the choice of the single particle potential U , since the
splitting of (1) is a trivial identity and the final result should be independent
on the particular choice of U(k). This is of course true only if the full BBG
expansion to all orders could be summed up exactly. If the expansion is truncated
at a given order, the results can show still a dependence on the choice of U(k),
and this dependence will be stronger if the expansion is further away from a
reasonable convergence. One can, therefore, take the degree of the dependence
on U(k) as a measure of the degree of convergence reached at a given order of
the expansion. The gap and continuous choices can be considered two opposite
cases for the potential U(k), since any other reasonable choice would modify
mainly its definition for k > kF and would be intermediate between these two
cases. In fact, the exact cancellation between the two diagrams of Fig. 4 occurs
only with the definition of (5) for k < kF , and it appears inconvenient to adopt a
choice for U(k) which does not include the cancellation. However, other choices
are surely possible, and one should check also in those other cases the degree
of convergence reached at a given level of the expansion. In the sequel we will
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restrict ourselves to the gap and continuous choices for checking the convergence
of the expansion.

Let us consider the symmetric nuclear matter EOS at the BHF level of ap-
proximation. The results for the two choices for U(k) are reported in Fig. 6,
where the Argonne v14 [5] is used for the bare NN potential.

Fig. 6. Nuclear matter saturation curve for the Argonne v14 NN potential. The solid
lines indicate the results at the Brueckner (two hole-lines) level for the standard (BHF-
G) and the continuous choices (BHF-C) respectively.

It is apparent from the figure that the degree of convergence is not yet satisfac-
tory at the BHF level. The difference for the energy per particle is of about 4-5
MeV in the considered density range. It has to be kept in mind, however, that the
potential energy part of the binding energy of 6 is about -40 MeV around satu-
ration density, and therefore the discrepancy between the two choices is of about
10%. This is the expected degree of convergence at the BHF level, according to
the above discussed criterion.

The BHF results imply that, for a check of convergence, it is mandatory to
consider the three hole-line diagrams contribution. According to the BBG ex-
pansion, this set of diagrams describes the irreducible three-nucleon correlations,
i.e. the three-body correlations which cannot be reduced to a product of two-
body correlations, already introduced at the BHF level. Let us consider in some
detail how the three hole-line diagrams can be summed up exactly, in analogy to
the summation of the ladder two hole-line diagrams of the BHF approximation.
Indeed, since the two hole-line contribution has been summed up by introducing
the G-matrix, which is the in-medium two-body scattering matrix, it is therefore
conceivable that the three hole-line diagrams could be summed up by introduc-
ing some similar generalization of the scattering matrix for three particles. The
three-body scattering problem has a long history by itself, and has been given a
formal solution by Faddeev [6]. For three distinguishable particles the three-body
scattering matrix T (3) is expressed as the sum of three other scattering matrices,
T (3) = T1 +T2 +T3. The scattering matrices Ti satisfy a system of three coupled
integral equations. The kernel of this set of integral equations contains explicitly
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the two-body scattering matrices pertaining to each possible pair of particles.
Also in this case, therefore, the original two-particle interaction disappears from
the equations in favor of the two-body scattering matrix. For identical particles
the three integral equations reduce to one due to the symmetry. In fact, the three
functions Ti must coincide within a change of variable with a unique function,
which we can still call T (3). The analogous equation and scattering matrix in
the case of nuclear matter (or other many-body systems in general) has been
introduced by Bethe [7,8]. The integral equation, the Bethe–Faddeev equation,
reads schematically

T (3) = G + G X Q3
e T (3)

〈k1k2k3|T (3)|k′
1k

′
2k

′
3〉 = 〈k1k2|G|k′

1k
′
2〉δK(k3 − k′

3) +

+ 〈k1k2k3|G12 X
Q3
e T (3)|k′

1k
′
2k

′
3〉 .

(7)

The factor Q3/e is the analogous of the similar factor appearing in the integral
equation for the two-body scattering matrix G, see (4). Therefore, the projection
operator Q3 imposes that all the three particle states lie above the Fermi energy,
and the denominator e is the appropriate energy denominator, namely the en-
ergy of the three-particle intermediate state minus the entry energy ω, in close
analogy with the equation for the two-body scattering matrix G of (4). The real
novelty with respect to the two-body case is the operator X. This operator in-
terchanges particle 3 with particle 1 and with particle 2, X = P123 +P132, where
P indicates the operation of cyclic permutation of its indices. It gives rise to the
so-called “endemic factor” in the Faddeev equations, since it is an unavoidable
complication intrinsic to the three-body problem in general. The reason for the
appearance of the operator X in this context is that no two successive G matri-
ces can be present in the same pair of particle lines, since the G matrix already
sums up all the two-body ladder processes. In other words, the G matrices must
alternate from one pair of particle lines to another, in all possible ways, as it is
indeed apparent from the expansion by iteration of (7), which is represented in
Fig. 7.

T
���

� � � �

k� k� k�

� � � � � � � � �

Fig. 7. The first few terms in the expansion of the Bethe-Faddeev integral equation.
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Therefore, both cyclic operations are necessary in order to include all possible
processes. Adding all terms with an arbitrary number of G-matrices, one gets
a generalized ladder series for three-particles, analogous to the ladder series
introduced for the two particles case in defining the G-matrix. Indeed, this is the
basis for the integral equation (7). In the structure of (7) the third particle, with
initial momentum k3, is somehow singled out from the other two. This choice is
arbitrary, but it is done in view of the use of the Bethe-Faddeev equation within
the BBG expansion.

In order to see how the introduction of the three-body scattering matrix T (3)

allows to sum up the three hole-line diagrams, we first notice, following B. D.
Day [9], that this set of diagrams can be divided into two distinct groups. The
first one includes the graphs where two hole-lines, out of three, originate at the
first interaction of the graph and terminate at the last one without any further
interaction in between. Schematically the sum of this group of diagram can be
represented as in part (a) of Fig. 8.

T
���

� a �

T
���

� b �

Fig. 8. Schematic representation of the direct (a) and exchange (b) three hole-line
diagrams.

The third hole-line has been explicitly indicated, out from the rest of the di-
agram. The remaining part of the diagram describes the rescattering, in all
possible way, of three particle-lines, since no further hole-line must be present
in the diagram. This part of the diagram is indeed the three-body scattering
matrix T (3), and the operator Q3 in (7) assures, as already mentioned, that only
particle lines are included.

The second group includes the diagrams where two of the hole-lines enter
their second interaction at two different vertices in the diagram, as represented
in part (b) of Fig 8. Again the remaining part of the diagram is T (3), i.e. the
sum of the amplitudes for all possible rescattering process of three particles. It
is easily seen that no other structure is possible. The set of diagrams indicated
in part (b) can be obtained by the ones of part (a) by simply interchanging
the final (or initial) point of one of the “undisturbed” hole-line with the final
(or initial) point of the third hole-line. This means that one can obtain each
graph of the group depicted in Fig. 8b by acting with the operator X on the
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bottom of the corresponding graph of Fig. 8a. In this sense the diagrams of
Fig. 8b can be considered the “exchange” diagrams of the ones in Fig. 8a (not
to be confused with the term “exchange” introduced previously for the matrix
elements of G). If one inserts the terms obtained by iterating (7) inside these
diagrams in substitution of the scattering matrix T (3) (the box in Fig. 8), the
first diagram, coming from the inhomogeneous term in (7), is just the bubble
diagram of Fig. 5. The corresponding exchange diagrams is the so called “ring
diagram” of Fig. 9.

Fig. 9. The ring diagram, belonging to the set of three hole-line diagrams. It can be
considered the exchange diagram of the bubble diagram.

It is easy to draw the remaining series of diagram which one obtains by going
on with the iterations.

Once the Bethe-Faddeev equations are solved, the contribution of the direct
three hole-line diagrams of Fig. 8a can be written as

Edir
3h = 1

2

∑
k1,k2,k3≤kF

∑
{k′},{k′′}≥kF

〈k1k2|G|k′
1k

′
2〉A·

· 1e 〈k′
1k

′
2k

′
3|XT (3)X|k′′

1k
′′
2k

′′
3 〉 1

e′ 〈k′′
1k

′′
2 |G|k1k2〉A ,

(8)

In (8) the denominator e = ek′
1

+ ek′
2
− ek1 − ek2 , and analogously e′ = ek′′

1
+

ek′′
2
−ek1−ek2 . The exchange diagrams of Fig. 8b can be obtained by multiplying

the same expression by a further factor X. In summary, the entire set of three
hole-line diagrams can be obtained by multiplying the expression of (8) by 1+X.

It has been recognized a long ago [8] that the summation of all three-hole
diagrams is essential, since individual three-hole diagram can be quite large,
but strong cancellation occurs among the different contributions. This is partic-
ularly true for the bubble diagram of Fig. 5a and the ring diagram of Fig. 9,
which turn out to be quite large but of opposite sign. As already mentioned, the
potential insertion diagram of Fig. 5b is different from zero in the continuous
choice and it turns out to be essential in compensating the contribution of both
bubble and ring diagrams. A scheme of approximation was first devised by B.
D. Day [9] within the gap choice for the single particle potential. In this scheme
the bubble and ring diagrams are indeed singled out from the whole set of three
hole-line diagrams, while the remaining series of diagrams is summed up by solv-
ing the Bethe-Faddeev integral equation. The bubble diagram requires special
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numerical treatment, since very large partial waves contribute to the interme-
diate G-matrix. Once the bubble and ring diagrams are subtracted from the
Bethe-Faddeev equation, the resulting integral equation for the whole set of the
higher order diagrams turns out to be much less sensitive to the larger partial
waves. We will refer to this contribution as the “higher order” contribution. The
numerical solution of the Bethe-Faddeev integral equation is delicate. The main
difficulty is the large matrix to be inverted to get the scattering matrix T (3).
This difficulty can be overcome by introducing a separable representation of the
G-matrix appearing in the kernel of the integral equation, as already performed
by B.D. Day [9] in the case of the gap choice. We refer to this reference and to
ref. [1] for other details of the numerical methods.

The degree of cancellation among the different terms is apparent in Fig. 10,
where the bubble, ring and higher order contributions are displayed [10] in the
case of the gap choice and the Argonne v14 NN potential.

Fig. 10. The contributions of the bubble (BUB) , ring (RING) and higher order
(HIGH) diagrams to the binding energy of symmetric nuclear matter as a function
of Fermi momentum, calculated within the gap choice. The line denoted by TOTAL is
the sum of all these contributions and gives the overall three hole-line contribution to
the EOS.

The final result, denoted as “total”, is relatively small and much smaller in size
than the individual contributions. The corresponding results for the continuous
choice are displayed in Fig. 11. In this case the additional contribution (BUBU)
of the potential insertion diagram in Fig. 5b must be considered. One can see the
relevance of this term in comparison with the others and its role in determining
the size of the total three hole-line contribution. The latter turns out to be much
smaller in the continuous choice than in the gap choice.
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Fig. 11. The same as in Fig. 10, but within the continuous choice. Here the line denoted
by BUBU is the contribution of the potential insertion diagram of Fig. 5b.

The final Equation of State obtained by adding the three hole-line contribution
is reported in Fig. 12, both for the gap choice (squares) and the continuous
choice (stars), again for the Argonne v14 potential, for a much wider range of
densities than in Fig. 6. For comparison, the EOS at the two hole-line level in the
continuous choice is also again reported (solid line) from Fig. 6. Two conclusions
can be drawn from these results.
i) The two saturation curves in the gap and continuous choices, with the inclu-
sion of the three hole-line diagrams, tend now to collapse in a single EOS, with
some deviations only at the highest density. This is a strong indication that
a high degree of convergence has been reached at this level of the expansion,
according to the criterion discussed above. Notice that the saturation curves ex-
tend from a density which is about one half of saturation density to about five
times saturation density, and, therefore, it appears unlikely that the agreement
between the two choices can be considered as a fortuitous coincidence.
ii) The Brueckner two hole-line EOS within the continuous choice turns out to be
already close to the full EOS, since in this case the three hole-line contribution
is quite small. In first approximation one can adopt the BHF results with the
continuous choice as the nuclear matter EOS.
The phenomenological saturation point for symmetric nuclear matter is, how-

ever, not reproduced, which confirms the finding of ref. [9]. The binding energy
per particle at the minimum of the saturation curve turns out to be close to
the empirical value of about -16 MeV, but the corresponding density comes out
about 30-40 % larger than the empirical one. Usually this drawback is corrected
by introducing three-body forces in the nuclear Hamiltonian, and indeed all re-
alistic two-nucleon forces, which fit the experimental two-nucleon phase shifts
and deuteron data, are not able to reproduce the empirical saturation point. In
other words, the results indicate that the missing of the saturation point is not
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Fig. 12. The Nuclear Equation of State including the three hole-line contribution
within the gap choice (squares) and the continuous choice (stars), for the Argonne
v14 potential. For comparison, the EOS at the two hole-line level in the continuous
choice is also reported (solid line).

due to a lack of accuracy in the treatment of the nuclear many-body problem,
but to a defect of the nuclear Hamiltonian. The need of three-body forces in nu-
clear matter is consistent with the findings in the study of few nucleon systems,
where also the binding energy and radii, as well as scattering data, cannot be
reproduced with only two-body forces. Not surprisingly, the effects of three-body
forces seem to be more pronounced in nuclear matter than in few body systems.

The standard NN interaction models are based on the meson–nucleon field
theory, where the nucleon is considered an unstructured point-like particle. The
Paris, the Argonne v14 (with the improved version v18 [11]), and the set of Bonn
potentials [12] fall in this category. In the one-boson exchange potential (OBEP)
model one further assumes that no meson–meson interaction is present and each
meson is exchanged in a different interval of time from the others. However,
the nucleon is a structured particle - it is a bound state of three quarks with
a gluon-mediated interaction, according to Quantum Chromodynamics (QCD).
The absorption and emission of mesons can be accompanied by a modification of
the nucleon structure in the intermediate states, even in the case of NN scattering
processes, in which only nucleonic degrees of freedom are present asymptotically.
A way of describing such processes is to introduce the possibility that the nucleon
can be excited (“polarized”) to other states or resonances. The latter can be the
known resonances observed in meson–nucleon scattering. At low enough energy
the dominant resonance is the Δ33, which has the smallest mass. If the internal
nucleon state can be distorted by the presence of another nucleon, the interaction
between two nucleons is surely altered by the presence of a third one. This effect
produces clearly a definite three-body force, which is absent if the nucleons are
considered unstructured. The simplest of such process is depicted in Fig. 13b.
Such a process can be interpreted in different but equivalent ways. One way is to
view the pion (meson) coming from the first nucleon to polarize the second one,
which therefore interacts with a third one as a Δ33 resonance, surely in a different
way than if it had remained a nucleon, like in Fig. 13a. The process of Fig. 13a is
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Fig. 13. An interaction process among three nucleons with only two-body force (a),
and a process involving a genuine three-body force (b).

not indeed a three-nucleon force, but just a repetition of a two-nucleon force. The
introduction of a three-nucleon interaction is a consequence of viewing processes
like the one of Fig. 13b as an effective interaction among three nucleons, which
eventually will be medium-dependent. The genuine three-nucleon forces can be
extracted from processes like the one of Fig. 13b by projecting out the Δ33 (or
other resonances) degrees of freedom in some approximate way. The theory of
three-nucleon forces has a very long history, and it started to be developed since
the early stage [13] of the theory of nuclear matter EOS, as well as of few nucleon
systems [14]. The most extensive study of the three-nucleon forces (TNF) has
been pursued by Grangé and collaborators [15]. Fig. 14, reproduced from [16],
indicates some of the processes which can give rise to TNF. Graph of Fig. 14a
is a generalization of the process of Fig. 13b, where other nucleon resonances
(e.g. the Roper resonance) can appear as intermediate virtual excitation and
other exchanged mesons can be present. Graph 14b includes possible non-linear
meson-nucleon coupling, as demanded by the chiral symmetry limit [16]. Graph
14c is the simplest one which includes meson-meson interaction. Other processes
of this type are of course possible [15,16], which involves other meson-meson
couplings, and they should be included in a complete treatment of TNF. Diagram
14d describes the effect of the virtual excitation of a nucleon-antinucleon pair,
and it is therefore somehow of different nature from the others. It gives an
important (repulsive) contribution and it has been shown [17] to describe the
relativistic effect on the EOS to first order in the ratio U/m between the single
particle potential and the nucleon rest mass.

The σ meson, appearing in some of the diagrams, is a hypothetical scalar me-
son, believed to be responsible for the intermediate attraction in the two-nucleon
interaction, whose mass and coupling constant are treated as parameters. One
should therefore be careful, as discussed in [15], to be at least consistent between
the treatments of the two-nucleon and the three-nucleon forces. A complete cal-
culations of the TNF in the framework of the meson-nucleon theory, i.e. the
calculation of the “best” TNF, is not yet available.

A simpler possibility is to adopt a more phenomenological approach, like
the one followed by the Urbana group [18]. Since the EOS obtained with only
two-body forces seems to need additional attraction at lower density and an
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Fig. 14. Some of the processes which can produce a genuine three-body force.

additional repulsion at higher density, it is therefore conceivable that the main
effect of TNF can be schematized by one attractive and one repulsive term,
as representative of the whole set of three-nucleon processes. Actually, once
the usual static approximation is made for the nucleons and the resonances
in calculating the meson exchange process, the structure of the different three-
body forces turns out to be quite similar. Since the strengths of the different
vertex appearing in these diagrams cannot be considered fairly well known, one
can treat the strengths of the two representative terms as free parameters to be
fitted to some known physical quantities. More explicitly, the TNF is written as

Vijk = V 2π
ijk + V R

ijk . (9)

The first (attractive) contribution is a cyclic sum over the nucleon indices i, j,
k of products of anticommutator {,} and commutator [,] terms

V 2π
ijk = A

∑
cyc

(
{Xij , Xjk}{τi · τj , τj · τk}

+ 1
4 [Xij , Xjk][τi · τj , τj · τk]

)
,

(10)

where
Xij = Y (rij)σi · σj + T (rij)Sij (11)

is the one–pion exchange operator, σ and τ are the Pauli spin and isospin oper-
ators, and Sij = 3

[
(σi ·rij)(σj ·rij)−σiσj

]
is the tensor operator. Y (r) and T (r)

are the Yukawa and tensor functions, respectively, associated to the one–pion
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exchange, as in the two–body potential. The repulsive part is taken as

V R
ijk = U

∑
cyc T

2(rij)T 2(rjk) . (12)

The strengths A (< 0) and U (> 0) can be fitted to reproduce the ground state
energy of both three nucleon systems (triton and 3He), and the empirical nuclear
matter saturation point.

Fig. 15. Saturation curve for symmetric nuclear matter in the Brueckner approxima-
tion without (dashed curve) and with (full line) three-body forces.

One such a fit, within the Brueckner approximation, is reported in Fig. 15.
The empirical saturation point is now reproduced and the EOS become much
more repulsive at high density. Of course, the higher density region, needed e.g.
in neutron star studies, is obtained by extrapolating the TBF from the region
around saturation where they are actually adjusted. This EOS can therefore be
inaccurate at the higher densities. One can see indeed that the contribution of
the three-body forces is substantial at high density, and therefore an accurate
inclusion of the three-body forces is highly demanded.

More detail on the use of phenomenological three-body forces will be given
in the Section 4.
The symmetric nuclear matter EOS obtained within the BBG expansion, with
only two-body forces included, turns out to be in fair agreement with the cor-
responding variational calculations of ref. [19,20]. Only at higher density, above
0.6 fm−3, the variational results seem to indicate a stronger repulsion. The same
trend is seen also when phenomenological three-body forces are included. Fur-
thermore, additional repulsion appears due to the relativistic boost corrections,
not included in the present BBG approach.
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3 The EOS for pure neutron matter

In this Section we will extend the analysis to pure neutron matter EOS, which is
more appropriate for neutron star studies, at densities up to about five times the
saturation one. Moreover, we consider the calculations for two nucleon-nucleon
potentials, the Av14 and the Av18, in order to analyze the dependence of the
results on the nuclear interaction.

We will not give details about contributions of different diagrams, but simply
illustrate the results for the neutron matter EOS, obtained by including only two-
body forces. The neutron matter EOS [21] is reported (full lines) in Figs. 16 and
17, both for the continuous choice (BHFC) and standard choice (BHFG). As
for symmetric nuclear matter, the discrepancy between the two curves indicates
to what extent the EOS still depends on the choice of the auxiliary potential
at BHF level, and therefore the degree of convergence. The EOS for the Av18
appears more repulsive, but the trend for the two potentials is similar. The
discrepancy does not exceed 4 MeV in the whole density range for the Av14
potential, and it is tiny in the case of Av18, except for the highest densities. It is
also substantially smaller than in the symmetric nuclear matter case, where the
discrepancy is large as much as about 8 MeV at kF = 1.8fm−1 for the Av14.
According to our criterion, this suggests a smaller value of the three hole-line

Fig. 16. Equation of state of pure neutron matter for the Av14 nucleon-nucleon po-
tential. The two full lines correspond to the Brueckner-Hartree-Fock approximation,
in the gap (BHFG) and continuous choice (BHFC) respectively. The addition of the
three-hole contribution D3 gives the total equation of state for the gap (stars) and
continuous choice (open circles) respectively.
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Fig. 17. The same as in Fig. 16, but for the Argonne v18 potential

contribution and is in agreement with the smaller value in neutron matter of
the “wound parameter”, which is the smallness parameter of the expansion and
should give a rough estimate of the ratio between the three hole-line and the two
hole-line contributions (in general between two successive order contributions).
It can be estimated by the average depletion of the momentum distribution
below the Fermi momentum. Indeed, at densities around the saturation value
the wound parameter turns out to be close to 0.1 in neutron matter [22] and
about 0.25 in symmetric nuclear matter [23].

These expectations are indeed confirmed by the calculations of the three hole-
line contributions. The inclusion of the three hole-line contributions results in the
two final EOS depicted in Figs. 16 and 17, where the points marked by stars and
the circles correspond to the standard and continuous choices, respectively. For
both NN potentials, the very close agreement between the two EOS is a strong
evidence that the expansion has reached convergence. Notice that, at Brueckner
(two hole) level, the EOS for the standard and continuous choices cross at some
value of the density, and at that point the overall three hole-line contribution
has the same value in both choices. Furthermore, in the continuous choice the
three hole-line contribution is substantially smaller, and it is actually negligible
to a first approximation. It appears that the corresponding values of the wound
parameter, which is close to 0.1 in neutron matter [22], give an upper limit for
the ratio between three and two hole-line contributions.

The final EOS appears more repulsive at high density for the Av18 than
for the Av14 potential. At lower density, up to about kF = 2.0fm−1, the two
potentials produce very similar EOS. This is not surprising, since both potentials
fit the NN experimental phase shifts up to 350 MeV Lab energy, which indeed
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corresponds to a relative momentum of about 2.0fm−1. Above this density, the
main contribution to the EOS comes from values of the relative NN momentum
which need extrapolation beyond the region where the potentials have been fitted
to the empirical data. It is likely that different extrapolations are obtained from
different potentials in general, and therefore the EOS at high density is largely
dependent on the NN potential model, even without the inclusion of three-body
forces. The inclusion of three-body forces in pure neutron matter is discussed in
the next Section.
The pure neutron matter EOS obtained within the BBG expansion, with only
two-body forces included, turns out to be substantially more repulsive at increas-
ing density than the corresponding variational EOS of ref. [19,20]. The reason of
these discrepancies has not yet been clarified. However, when three-body forces
are included in both treatments, the discrepancies are substantially reduced, and
a fair agreement is obtained.

4 Neutron Star Structure

Once the Nuclear Equation of State, both for symmetric and pure neutron mat-
ter, has been established on a firm basis, one can try to study the structure of
neutron star (NS) interior. It is indeed believed that the interior of neutron stars
contains mainly asymmetric nuclear matter with density increasing towards the
center of the star. The matter in the outer crust, at sub-nuclear densities, exists
in a different state, namely, it forms crystal structures of atomic species, whose
mass number increases with increasing density. In the region where neutrons
start to drip out of nuclei, the crystalline structure is probably mixed with a
neutron gas; this phase persist up to the densities where nuclei merge to form
uniform asymmetric nuclear matter. This outer region is the place where many
interesting phenomena occur. However, to the extent that the analysis is re-
stricted to the mass and radius of the star, the main contribution is coming
from the interior, where nuclear matter sets in. One can hope, therefore, that
neutron stars could be a testing ground for the Nuclear Equation of State. Up
to now the masses of few neutron stars have been accurately determined. Only
recently some indirect indications of neutron star radii have been reported, and,
as already noticed, the astrophysics of neutron stars is rapidly developing. An
accurate enough measurement of both mass and radius of a neutron star is ex-
pected to produce an enormous advancement in our knowledge of the nuclear
Equation of State.

The observed neutron star masses are ≈ (1− 2)M� (where M� is the mass
of the sun, M� = 1.99× 1033g). Typical radii of NS are thought to be of order
10 km, and the central density is a few times normal nuclear matter density
(ρ0 ≈ 0.17 fm−3). This requires a detailed knowledge of the EOS for densities
ρ � ρ0. This is a very hard task from the theoretical point of view. In fact,
whereas at densities ρ ≈ ρ0 the matter consists mainly of nucleons and leptons,
at higher densities several species of particles may appear due to the fast rise
of the baryon chemical potentials with density. Among these new particles are
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strange baryons, namely, the Λ, Σ and Ξ hyperons. Due to its negative charge,
the Σ− hyperon is the first strange baryon expected to appear with increasing
density in the reaction n+ n→ p+Σ−, in spite of its substantially larger mass
compared to the neutral Λ hyperon (MΣ− = 1197 MeV,MΛ = 1116 MeV).
Other species in stellar matter may appear, like Δ isobars along with pion and
kaon condensations. It is therefore mandatory to generalize the study of nuclear
EOS with the inclusion of the possible hardens, other than nucleons, which can
spontaneously appear in the inner part of a NS, just because their appearance is
able to lower the ground state energy of the nuclear matter dense phase. In the
following we will concentrate on the production of strange baryons and assume
that a carbonic description of nuclear matter holds up to densities comparable
to those encountered in the cores of neutron stars.

As we have seen from the previous Sections, the nuclear EOS can be calcu-
lated with good accuracy in the Brueckner two hole-line approximation within
the continuous choice for the single particle potential, since the results in this
scheme are quite close to the full convergent calculations which include also the
three hole-line contribution. It is then natural to include the hyperon degrees of
freedom within the same approximation to calculate the nuclear EOS needed to
describe the NS interior. For this purpose, one needs also a nucleon-hyperon (NY)
and a hyperon-hyperon (YY)interaction. In the following this interaction will be
taken as the Nijmegen soft-core model [24]. In the calculations the hyperon-
hyperon interaction will be neglected in first approximation. We will comment
on this point in the sequel. With these NN and NY potentials, the various G
matrices are evaluated by solving numerically the Brueckner equation, which
can be written in operator form as

Gab[W ] = Vab +
∑

c

∑
p,p′

Vac

∣∣∣pp′
〉 Qc

W − Ec + iε

〈
pp′
∣∣∣Gcb[W ] , (13)

where the indices a, b, c indicate pairs of baryons and the Pauli operator Q and
energy E determine the propagation of intermediate baryon pairs. In a given
nucleon-hyperon channels c = (NY ) one has, for example,

E(NY ) = mN + mY +
k2

N

2mN
+

k2
Y

2mY
+ UN (kN ) + UY (kY ) . (14)

The hyperon single-particle potentials within the continuous choice are given by

UY (k) = Re
∑

N=n,p

∑
k′<k

(N)
F

〈
kk′
∣∣∣G(NY )(NY )

[
E(NY )(k, k′)

] ∣∣∣kk′
〉

(15)

and similar expressions of the form

UN (k) =
∑

N ′=n,p

U
(N ′)
N (k) +

∑
Y =Σ−,Λ

U
(Y )
N (k) (16)

apply to the nucleon single-particle potentials. The nucleons feel therefore di-
rect effects of the other nucleons as well as of the hyperons in the environ-
ment, whereas for the hyperons there are only nucleonic contributions, because
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of the missing hyperon-hyperon potentials. The equations (13–16) define the
BHF scheme with the continuous choice of the single-particle energies. Due to
the occurrence of UN and UY in (14) they constitute a coupled system that
has to be solved in a self-consistent manner for several Fermi momenta of the
particles involved. Once the different single-particle potentials are known, the
total nonrelativistic carbonic energy density, ε, and the total binding energy per
baryon, B/A, can be evaluated

B

A
=

ε

ρn + ρp + ρΣ− + ρΛ
, (17)

ε =
∑

i=n,p,Σ−,Λ

∫ k
(i)
F

0

dk k2

π2

(
mi +

k2

2mi
+

1
2
Ui(k)

)
(18)

As we have seen, nonrelativistic calculations, based on purely two-body in-
teractions, fail to reproduce the correct saturation point of symmetric nuclear
matter, and three-body forces among nucleons are needed to correct this defi-
ciency. In the sequel the so-called Urbana model will be used, which consists,
as we have already seen, of an attractive term due to two-pion exchange with
excitation of an intermediate Δ resonance, and a repulsive phenomenological
central term. We introduced the same Urbana three-nucleon model within the
BHF approach (for more details see [25]). In our approach the TBF is reduced to
a density dependent two-body force by averaging on the position of the third par-
ticle, assuming that the probability of having two particles at a given distance
is reduced according to the two-body correlation function. The corresponding
nucleon matter EOS (no hyperon) satisfies several requirements, namely (i) it
reproduces correctly the nuclear matter saturation point, (ii) the incompressibil-
ity is compatible with values extracted from phenomenology, (iii) the symmetry
energy is compatible with nuclear phenomenology, (iv) the causality condition
is always fulfilled.

If leptons, namely electrons and muons, and hyperon are introduced, the
general EOS can be calculated for a given composition of the baryon components.
This allows the determination of the chemical potentials (by simple numerical
derivatives of the energy) of all the species, carbonic and leptonic, which are
the fundamental input for the equations of chemical equilibrium. The latter
determines the actual detailed composition of the dense matter and therefore the
EOS to be used in the interior of neutron stars. Indeed, at high density the matter
composition is constrained by three conditions: i) chemical equilibrium among
the different species, ii) charge neutrality, and iii) baryon number conservation.
At density ρ ≈ ρ0 the stellar matter is composed of a mixture of neutrons,
protons, electrons, and muons in β-equilibrium [electrons are ultrarelativistic
at these densities, μe = (3π2ρxe)1/3]. In that case the equations for chemical
equilibrium read

μn = μp + μe , (19)
μe = μμ . (20)
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Since we are looking at neutron stars after neutrinos have escaped, we set the
neutrino chemical potential equal to zero. Strange baryons appear at density
ρ ≈ (2 − 3)ρ0 [26], mainly in carbonic processes like n + n → p + Σ− and
n + n→ n + Λ. The equilibrium conditions for those processes read

2μn = μp + μΣ , (21)
μn = μΛ . (22)

The other two conditions of charge neutrality and baryon number conservation
allow a unique solution of a closed system of equations, yielding the equilibrium
fractions of the baryon and lepton species for each fixed baryon density. They
read

ρp = ρe + ρμ + ρΣ , (23)
ρ = ρn + ρp + ρΣ + ρΛ . (24)

Finally, from the knowledge of the equilibrium composition one determines the
equation of state, i.e., the relation between pressure P and baryon density ρ. It
can be easily obtained from the thermodynamical relation

P = −dE

dV
. (25)

being E the total energy and V the total volume. Equation (25) can be explicitly
worked out in terms of the carbonic and leptonic binding energies, respectively
B and EL,

P = −dE

dV
= − d

dV
(B + EL) = PB + PL , (26)

PB = ρ2 d(B/A)
dρ

= ρ2 d

dρ

[
(xn + xp)

εNN

ρN
+ xΣ

εNΣ

ρΣ
+ xΛ

εNΛ

ρΛ

]
, (27)

PL = ρ2 d(EL/A)
dρ

= ρ2 d

dρ

[
xe−

εe−

ρe−
+ xμ−

εμ−

ρμ−

]
. (28)

In the above equations xi represent the baryon fraction of each species. As far
as the leptons are concerned, at those high densities electrons are a free ultra-
relativistic gas, whereas muons are relativistic. Therefore their energy densities
εL are well-known from textbooks, see e.g. ref.[27]. In order to construct models
of neutron stars, one needs to calculate the total mass-energy density E as well.
This can be easily obtained just by adding the mass-energy densities of each
species Ei

E = EN + EΣ + EΛ + Ee− + Eμ− , (29)

While the electron and muon contributions, respectively Ee− and Eμ− , are known
from textbooks, the carbonic contribution is given by

EN =
1
c2

(εNN + mNρN ) , (30)
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EΣ =
1
c2

(εNΣ + mΣρΣ) , (31)

EΛ =
1
c2

(εNΛ + mΛρΛ) . (32)

mi being the rest mass and c the speed of light. For more details, the reader is
referred to ref. [26] and references therein.

In figure 18 we show the chemical composition of β-stable and asymmet-
ric nuclear matter containing hyperons. In the upper panel we display the case
when only two-body nucleonic forces are present, whereas in panel b) nucleonic
TBF’s are included. We observe that the inclusion of TBF’s shifts the hyperon
onset points down to ρ � 2− 3 times normal nuclear matter density, since some
additional repulsion is now present. Moreover, an almost equal percentage of
nucleons and hyperons are present in the stellar core at high densities. Such
a low threshold for hyperons is in agreement with other approaches [28,29]. A
strong deleptonization of matter takes place, since it is energetically convenient
to maintain charge neutrality through hyperon formation than β-decay. This can
have far reaching consequences for the onset of kaon condensation. The main
physical features of the nuclear EOS which determine the resulting composi-
tions are essentially the symmetry energy of the nucleon part of the EOS and
the hyperon single particle potentials inside nuclear matter. Since at low enough
density the nucleon matter is quite asymmetric, the small percentage of protons
feels a deep single particle potential, and therefore it is energetically convenient
to create a Σ− hyperon since then a neutron must be converted into a proton.
The deepness of the proton potential is mainly determined by the nuclear mat-
ter symmetry energy. Furthermore, the potential felt by the hyperons can shift
substantially the threshold density at which each hyperon sets in. This points
are illustrated in Fig. 19, where different single particle potentials are plotted at
a given nucleon density. For simplicity, neutron and proton densities are fixed
at ρN = 0.4 fm−3 and ρp/ρN = 0.1, and the Σ− density is varied. Under these
conditions the Σ− single-particle potential is sizably repulsive, while UΛ is still
attractive (see also [26]) and the nucleons are much more strongly bound. The
Σ− single-particle potential has a particular shape with an effective mass m∗/m
slightly larger than 1, whereas the lambda effective mass is typically about 0.8
and the nucleon effective masses are much smaller.

The resulting Equation of State is displayed in Figure 20. The dotted line
represents the case when only two-body forces are present, whereas the solid line
shows the case when TBF’s are included. The upper curves show the equation of
state when stellar matter is composed only by nucleons and leptons. We mainly
observe a stiffening of the equation of state because of the repulsive contribution
coming from the TBF’s. The inclusion of hyperons (lower curves) produces a
soft equation of state which turns out to be very similar to the one obtained
without TBF’s. This is quite astonishing because, in the pure nucleon case, the
repulsive character of TBF at high density increases the stiffness of the EOS,
thus changing dramatically the equation of state. However, when hyperons are
included, the presence of TBF’s among nucleons enhances the population of Σ−

and Λ because of the increased nucleon chemical potentials with respect to the
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Fig. 18. The equilibrium composition of asymmetric and β-stable nuclear matter con-
taining Σ− and Λ hyperons is displayed. In the upper panel only two-body nucleonic
forces are present, whereas in the lower panel TBF’s have been included.

case without TBF, thus decreasing the nucleon population. The net result is
that the equation of state looks very similar to the case without TBF, but the
chemical composition of matter containing hyperons is very different when TBF
are included. In the latter case, the hyperon populations are larger than in the
case with only two-body forces. This has very important consequences for the
structure of the neutron stars. Of course, this scenario could partly change if
hyperon-hyperon interactions were known or if TBF would be included also for
hyperons, but this is beyond our current knowledge of strong interactions.

5 Equilibrium configurations of neutron stars

We assume that a star is a spherically symmetric distribution of mass in hydro-
static equilibrium. The equilibrium configurations are obtained by solving the
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Tolman-Oppenheimer-Volkoff (TOV) equations [27] for the pressure P and the
enclosed mass m,

dP (r)
dr

= −Gm(r)E(r)
r2

[1 + P (r)/E(r)]
[
1 + 4πr3P (r)/m(r)

]
1− 2Gm(r)/r

, (33)

dm(r)
dr

= 4πr2E(r) , (34)

being G the gravitational constant. Starting with a central mass density E(r =
0) ≡ Ec, we integrate out until the pressure on the surface equals the one corre-
sponding to the density of matter composed of iron. This gives the stellar radius
R and the gravitational mass is then

MG ≡ m(R) = 4π
∫ R

0
dr r2E(r) . (35)

For the outer part of the neutron star we have used the equations of state
by Feynman-Metropolis-Teller [30] and Baym-Pethick-Sutherland [31], and for
the medium-density regime we use the results of Negele and Vautherin [32].
For density ρ > 0.08 fm−3 we use the microscopic equations of state obtained
in the BHF approximation described above. For comparison, we also perform



Nuclear Equation of State 27

0 0.2 0.4 0.6 0.8 1 1.2
Baryon density ρ (fm−3)

0

100

200

300

400

500
P

re
ss

ur
e 

(M
eV

 f
m

−3
)

Paris
Paris + TBF

N

N−Y

Fig. 20. The pressure is displayed vs. the baryon density for hyperon-free (upper
curves) and hyperon-rich (lower curves) matter. The solid (dashed) lines represent
the case when nucleonic TBF’s are (are not) included.

calculations of neutron star structure for the case of asymmetric and β-stable
nucleonic matter. The results are plotted in Fig. 21. We display the gravitational
mass MG (in units of the solar mass Mo) as a function of the radius R (panel (a))
and central baryon density nc (panel (b)). We note that the inclusion of hyperons
lowers the value of the maximum mass from about 2.1 Mo down to 1.26 Mo. This
value lies below the value of the best observed pulsar mass, PSR1916+13, which
amounts to 1.44 solar masses. However the observational data can be fitted if
rotations are included, see dotted line in panel (b). In this case only equilibrium
configurations rotating at the Kepler frequency ΩK are shown. However, ΩK is
much larger than the rotational frequency of that pulsar, and therefore rotation
probably does not play any role.
In conclusion, the main finding of our work is the surprisingly low value of the
maximum mass of a neutron star, which hardly comprises the observational
data. This fact indicates how sensitive the properties of the neutron stars are
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Fig. 21. In panel (a) the mass-radius relation is shown in the case of beta-stable matter
with hyperons (solid line) and without hyperons (dashed line). The thick line represents
the measured value of the pulsar PSR1913+16 mass. In panel (b) the mass is displayed
vs. the central density. The dotted line represents the equilibrium configurations of
neutron stars containing nucleons plus hyperons and rotating at the Kepler frequency
ΩK .

to the details of the interaction. In particular our result calls for the need of in-
cluding realistic hyperon-hyperon interactions. However, the use of the available
hyperon-hyperon interactions seem to introduce only minor changes in the re-
sults [33]. Despite the uncertainty on the NY and YY interactions, it is unlikely
that one can obtain a neutron star mass substantially larger. The possible oc-
currence of a quark core is usually assumed to further soften the EOS and lower
the maximum mass. However, this is not necessarily true, since at large density
the quark pressure could rise fast enough to increase the stability of the system.
In any case, the possible quark core is not expected to change dramatically the
critical neutron star mass. Even if an explicit analysis of the quark core has still
to be worked out, it is fair to say that the observation of a neutron star with a
mass much larger than 1.4-1.5 solar mass would indicate that indeed some basic
ingredient is missing in our understanding of neutron star structure.
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1 Introduction, General Formalism

The research on the superfluidity of neutron matter can be traced back to
Migdal’s observation that neutron stars are good candidates for being macro-
scopic superfluid systems [1]. And, in fact, during more than two decades of
neutron-star physics the presence of neutron and proton superfluid phases has
been invoked to explain the dynamical and thermal evolution of a neutron star.
The most striking evidence is given by post-glitch timing observations [2,3], but
also the cooling history is strongly influenced by the possible presence of super-
fluid phases [4,5]. On the theoretical side, the onset of superfluidity in neutron
matter or in the more general context of nuclear matter was investigated soon
after the formulation of the Bardeen, Cooper, and Schrieffer (BCS) theory of
superconductivity [6] and the pairing theory in atomic nuclei [7,8].

The peculiar feature of a nucleon system is that it is a strongly interacting
Fermi system with a force which has a short-range repulsive component and a
long-range attractive one. The first question raised by scientists was whether or
not the strongly repulsive core might prevent the formation of a superfluid state.
But it was indeed shown [9] that the BCS approach, based on the mechanism of
Cooper pairs, can be successfully extended to nuclear matter and that superfluid
states could in fact exist for a wide class of nucleon–nucleon potentials [10]. The
second question is related to the fact that the superfluid state of nuclear matter
is a self-sustaining state in the sense that nucleons participating to the pairing
coupling also screen the pairing itself. From this point of view one expects the
strong correlations to play an important role in delimiting the magnitude of the
pairing gap. Therefore it appears necessary to go beyond the pure BCS approach
and properly add the effects of the medium polarization as self-energy and vertex
corrections.

Since the neutron star “laboratory” can only provide an indirect evidence of
the nucleon pairing in infinite matter and its relation with the pairing in nuclei
is still too much model dependent, we need to rely on very accurate quantitative
theoretical predictions of its properties such as energy gap, superfluidity density
domain, critical temperature, and other physical quantities associated with the
various superfluid states. These quantities may only be obtained from ab initio
calculations, i.e., microscopic approaches using as input the bare nucleon-nucleon
interaction, because we are exploring a density domain much wider than the
saturation region where phenomenological interactions such as Skyrme forces

D. Blaschke, N.K. Glendenning, and A. Sedrakian (Eds.): LNP 578, pp. 30–53, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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are well suited. There is a more basic reason to refrain from using effective
interactions, that is a double counting of the particle-particle (p-p) correlations
incorporated in the effective interaction, but also in the gap equation.

Fortunately, for more than two decades realistic potentials, based on field-
theoretical approaches, have been supplied to describe the bare nucleon-nucleon
interaction. The term ‘realistic’ means that the parameters contained in such po-
tentials are adjusted to simultaneously reproduce the experimental phase shifts
of nucleon-nucleon scattering and the binding energies of the lightest nuclei.

In this chapter the problem of superfluidity in neutron matter is surveyed
and special emphasis is devoted to new theoretical developments and calcula-
tions. In the following section the general formalism of pairing in a strongly
interacting Fermi system is presented. In Sect. 2 the possible superfluid states of
nucleon matter are described within the BCS theory extended to non-zero angu-
lar momentum. In the last section some aspects of the generalized gap equation
will be discussed, including the medium polarization effects at very low den-
sity (Sect. 3.1), the induced interaction approach (Sect. 3.2), and the role of
self-energy corrections (Sect. 3.3).

We mention three previous works for a comprehensive study of superfluidity
in nuclear matter: the early papers based on the generalized BCS-Bogolyubov
theory [11,12], which already give a systematic survey of most superfluid states of
nuclear matter; the second one [13], based on the method of the correlated basis
functions, mainly focussed on the 1S0 pairing, but containing a wide discussion
of the important medium correlation effects; and lastly, a recent more general
overview of pairing in nuclear matter [14].

1.1 Green Function Formalism, Generalized Gap Equation

In this section we briefly review the main points of the treatment of a superfluid
Fermi system within the Green function formalism. A detailed account is given
in various textbooks [15,16,17,18,19,20].

The principal equations describing a superfluid system are the Gorkov equa-
tions, that can be considered a generalization of the Dyson equation for a normal
Fermi system. A diagrammatic representation of the Gorkov equations is shown
in Fig. 1(a). They express the relation between normal and anomalous propa-
gators G and F , defined by

G(1, 2) =
1
i
〈
T (Ψ1Ψ

†
2 )
〉
, (1a)

F (1, 2) =
1
i
〈
T (Ψ1Ψ2)

〉
, (1b)

and the self-energy Σ and gap function Δ. In a homogeneous system, these four
quantities depend only on a four-vector k = (k0,k) and can be written as 2× 2
matrices in spin space, for example,

Δ(k) =
(
Δ↑↑ Δ↑↓
Δ↓↑ Δ↓↓

)
(k) . (2)
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Fig. 1. (a) Diagrammatic representation of the Gorkov equations. (b) Equations for
the self-energy Σ and gap function Δ

Using the free fermion propagator

G0(k) =
ei0k0

k0 − k2/2m + μ + i0k0
, (3)

and defining

ε(k) =
k2

2m
+ Σ(k0,k)− μ , (4)

one can write the system of equations explicitly as(
[k0 − ε(+k)]1 Δ(k)

Δ†(k) [k0 + ε(−k)]1

)(
G(k)
F†(k)

)
=
(

1
0

)
, (5)

where 1 denotes the two-dimensional unit matrix. In order to take into account
at the same time pairing correlations ΔS with spin S = 0 and S = 1, one can
make the ansatz

Δ =
(

0 +Δ0 + iΔ1
−Δ0 + iΔ1 0

)
, (6)

and equivalently for F†. The self-energy Σ and G are diagonal in the spin indices.
If the ground state is assumed to be time-reversal invariant, the gap function
has in general the structure of a unitary triplet state [21,22], i.e., it fulfills

Δ†(k)Δ(k) = Δ(k)21 , (7)

where by Δ(k)2 we denote the determinant of Δ in spin space.
The system (5) can then be inverted with the solution

G(k) =
k0 + ε(−k)

D(k)
, (8a)

F †
S(k) =

ΔS(k)
D(k)

, (8b)
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where
D(k) = [k0 − ε(+k)] [k0 + ε(−k)]−Δ0(k)2 −Δ1(k)2 , (9)

that expresses the propagators G and F † in terms of Σ and Δ, respectively.
In order to determine uniquely the four quantities one needs two more equa-

tions, which relate Σ and Δ to the interaction. These equations are displayed in
Fig. 1(b) and read explicitly

Σαα(k) =
1
i

∫
d4k′

(2π)4
∑

β

〈
kα, k′β|T |kα, k′β

〉
Gββ(k′) , (10a)

Δαβ(k) = i
∫

d4k′

(2π)4
∑
α′,β′

〈
kα,−kβ|Γ |k′α′,−k′β′〉Fα′β′(k′) , (10b)

where greek letters denote spin indices and T and Γ are the scattering matrix and
the irreducible interaction kernel, respectively. Clearly these equations cannot
be solved in full generality, but one has to recur to some approximation at this
stage. The simplest, very common, BCS approximation, is to replace T and Γ
by the leading term, namely the bare interaction V . In this case the interaction
is energy independent and the k0 integration in (10a,10b) can be carried out
trivially, leading to

Σ(k) =
∑
k′

v2
k′

2

[〈
k,k′|V0 + 3V1|k,k′〉
−
〈
k,k′|3V1 − V0|k′,k

〉]
, v2 =

1
2

(
1− ε

E

)
, (11a)

ΔS(k) =
∑
k′

(uSv)k′
〈
+k′,−k′|VS |+k,−k

〉
a
, uSv =

−ΔS

2E
, (11b)

where

E2 = ε2 + Δ2
0 + Δ2

1 , ε =
k2

2m
+ Σ(k)− μ . (12)

Together with an equation fixing the chemical potential μ for given density ρ,

ρ = 2
∑

k

v2
k , (13)

this is the coupled set of equations that needs to be solved in order to find
the Hartree-Fock self-energy ΣHF(k) and the BCS gap function ΔBCS(k) in a
superfluid system. In contrast to a normal Fermi system, the smooth occupation
numbers v2

k instead of the Fermi function θ(kF −|k|) appear in the HF equation.

2 BCS Approximation

In this section we present the solutions of the BCS gap equation

ΔTS(k) = −
∑
k′

〈
k|VTS |k′〉ΔTS(k′)

2E(k′)
, (14a)

ρ =
k3

F

3π2 = 2
∑

k

1
2

[
1− ε(k)

E(k)

]
, (14b)
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where
E(k)2 = ε(k)2 +

∑
T,S=0,1

ΔTS(k)2 , ε(k) = e(k)− μ (15)

with μ being the chemical potential and e(k) the single-particle spectrum. Dif-
ferent realistic nucleon-nucleon potentials V [23,24,25,26,27,28] will be used as
input. The equations are valid for pure neutron matter (T = 1) and also for
symmetric nuclear matter (T = 0, 1), if the derivation in the previous section is
extended to include isospin quantum number T in analogy to the spin S.

2.1 Pairing in Different Partial Waves

In order to reduce the three-dimensional integral equation (14a) to a set of one-
dimensional ones, it is advantageous to perform partial wave expansions of the
potential and the gap function. In this way one arrives at separate equations
in the different (TSLL′) channels of the interaction, provided an angle-average
approximation is made by replacing Δ(k)2 →

∫
dk̂/4πΔ(k)2 in (15). The fol-

lowing equations for the partial wave components of the gap function are then
obtained [12,29,30,31,32,33]:

ΔTSL(k) = − 1
π

∫ ∞

0
dk′k′2∑

L′

V TS
LL′(k, k′)√

ε(k′)2 + Δ(k′)2
ΔTSL′(k′) , (16)

where
Δ(k)2 =

∑
T,S,L

ΔTSL(k)2 , (17)

and with the matrix elements of the bare potential in momentum space

V TS
LL′(k, k′) =

∫ ∞

0
dr r2 jL′(k′r)V TS

LL′(r) jL(kr) . (18)

It should be noted that the different equations are still coupled due to the fact
that the total gap appearing in the denominator on the r.h.s. of (16) is the
r.m.s. value of the gaps in the different partial waves. The gap equation allows in
principle the coexistence of pairing correlations with different quantum numbers
(TS), even though the different (TS) channels are not mixed by the interaction.
In practice, however, so far no such mixed solutions of the gap equation have
been found: even if at a given density two or more uncoupled solutions exist, the
strong nonlinear character of the gap equation prohibits a coupled solution. (In
finite nuclei such mixed solutions seem to exist under certain conditions [34]).
This means that in practice this (TS)-coupling can be neglected and that at a
given density the solution of the uncoupled gap equation with the largest gap is
the energetically flavored one.

The only case when it is clearly necessary to keep the coupled equations is
the mixing of partial waves due to the tensor potential. In this case the gap
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equation can be written in matrix form (for given S = 1, T, L):(
ΔL

ΔL+2

)
(k) = − 1

π

∫ ∞

0
dk′k′2 1

E(k′)

(
VL,L VL,L+2
VL+2,L VL+2,L+2

)
(k, k′)

(
ΔL

ΔL+2

)
(k′)

(19)
with

E(k)2 = [e(k)− μ]2 + ΔL(k)2 + ΔL+2(k)2 . (20)

This is relevant equation for the 3SD1 (T = 0) and 3PF2 (T = 1) channels, for
example.

Let us finally mention that usually, apart from the 3SD1 channel, the two
equations (14a) and (14b) can be decoupled by setting μ = e(kF ). The reason
is the small value of the ratio Δ/μ, so that a Fermi surface is still quite well
defined.

We come now to the presentation of the results that are obtained by solv-
ing the previous equations numerically, using a kinetic energy spectrum e(k) =
k2/2m for the moment. In practice, one finds in pure neutron matter (T = 1) gaps
only in the 1S0 [12,13,35,36,37,38] and 3PF2 [12,29,30,31,32,33] partial waves.
They are reported in Figs. 2 and 3, respectively. It can be observed that the
maximum pairing gap is about 3 MeV in the 1S0 channel and of the order of
1 MeV in the 3PF2 wave. It is remarkable that solutions obtained with different
nucleon-nucleon potentials are nearly indistinguishable in the 1S0 case, whereas
in the 3PF2 wave such good agreement can only be observed up to kF ≈ 2 fm−1

(with the exception of the Argonne V14 potential that is not very well fitted
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Fig. 2. 1S0 gap evaluated in BCS approximation with free single-particle spectrum and
different potentials
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Fig. 3. 3PF2 gap evaluated in BCS approximation with free single-particle spectrum
and different potentials

to the phase shifts), from where on the predictions start to diverge from each
other. The reason [32,38] is the fact that the various potentials are constrained
by the phase shifts only up to scattering energies Elab of about 350 MeV, which
roughly corresponds to a Fermi momentum of kF ≈

√
mElab/2 ≈ 2 fm−1. Thus

even on the BCS level the gap in the 3PF2 channel at a neutron density higher
than ≈ 0.3 fm−3 is at the moment not known. Apart from that it is clear that
the BCS approximation is not reliable at the very large densities for which a
gap is predicted in Fig. 3. However, nobody has so far attempted to include
polarization effects in this channel.

Let us mention here for completeness that in symmetric nuclear matter one
finds very strong pairing of the order of 10 MeV in the 3SD1(T = 0) channel,
reminiscent of the deuteron bound state [12,21,22,39,40,41,42,43,44,45,46], and
also a gap of the order of 1 MeV in the 3D2 wave [12,47]. This, however, is
probably not very relevant for neutron star physics, since a prerequisite for this
T = 0 neutron-proton pairing to take place is the existence of (nearly) isospin
symmetric nuclear matter, the pairing correlations being rapidly destroyed by
increasing asymmetry [48,49,50]. We will therefore not discuss this type of pairing
further on.

2.2 Pairing Gaps in Neutron Star Matter

Let us now come to the T = 1 gaps that can be expected in isospin asymmetric
(beta-stable and charge neutral) neutron star matter. On the BCS level, the only



Superfluidity in Neutron Star Matter 37

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

Δ F
[M

eV
]

ρ [fm-3]

neutron 1S0

proton 1S0

neutron 3PF2
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influence of isospin asymmetry on these gaps is via the neutron single-particle
energy e(k) appearing in the gap equation. Calculations have been performed
using e(k) determined in the BHF approximation extended to asymmetric nu-
clear matter [30,31,51,52,53,54,55,56], and typical results are shown in Fig. 4.
One observes that 1S0 pairing can take place independently in the neutron and
in the proton component of the matter. If plotted as a function of total baryon
density, the neutron pairing occurs naturally at lower density and with a larger
amplitude than the proton pairing, because at the higher density the proton
effective mass is smaller and the pairing therefore more reduced. The same is
true for the 3PF2 pairing in the neutron component, which is strongly reduced
with respect to the calculation with a free spectrum shown in Fig. 3 above. We
stress that the results displayed in Fig. 4 can only be qualitative, because they
clearly depend on the details (in particular the proton fraction) of the equation
of state that is used. The results shown were obtained with a BHF EOS based
on the Argonne V14 potential and involving n, p, e, μ components [52].

3 Beyond BCS

In the previous section we have presented many results that were all obtained
within the BCS approximation. However, as has been explained in the intro-
duction, this approximation amounts to a mean-field approach, equivalent to
and consistent with the Hartree-Fock approximation in a normal Fermi system.
More precisely, the BCS approximation neglects completely any contribution
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beyond the bare potential to the interaction kernel Γ appearing in the general
gap equation (10b).

Going consistently beyond the BCS approximation is however a very difficult
task and has been only partially achieved so far. We will review in the following
sections some aspects of these extensions. We begin with a discussion of the
situation at extremely low density, where certain analytical results are known.
Following that, the general framework at more relevant densities will be set up,
and we will briefly present the results that have been obtained so far by various
authors. Finally, in the last section, we will focus on a certain part of the problem
that has recently been tackled, namely the treatment of the energy dependence
of the self-energy that appears in the gap equation.

3.1 Low Density

In order to derive an exact analytical result for the pairing gap including polar-
ization effects that is valid at very low density (more precisely, for kF << 1/|a|,
where a is the relevant scattering length), we begin again with the BCS gap
equation,

Δk = −
∑
k′

Vkk′
1

2Ek′
Δk′ , Ek =

√
(ek − eF )2 + Δ2

k . (21)

It is then useful [36,54,57] to introduce a modified interaction T that is given by
the solution of the integral equation

Tkk′ = Vkk′ −
∑
k′′

Tkk′′Fk′′Vk′′k′ , (22)

where Fk is for the moment an arbitrary function. (We have used the symbol
T , although in general this quantity is not to be identified with the scattering
matrix). Making use of this equation, the gap equation is transformed into

Δk = −
∑
k′

Tkk′

(
1

2Ek′
− Fk′

)
Δk′ . (23)

Of particular interest is now the choice Fk = sgn(k − kF )/2Ek, which leads to
the set of equations

Δk = −2
∑

k′<kF

Tkk′
1

2Ek′
Δk′ , (24)

Tkk′ = Vkk′ −
∑
k′′

Tkk′′
sgn(k′′ − kF )

2Ek′′
Vk′′k′ . (25)

Therefore, in the limit Δ/eF → 0 that is approached with vanishing density,
T does become identical to the free scattering matrix, because Ek → |ek − eF |
in this situation. At the same time, in the gap equation (24) the interaction T
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is now cut off at k′ = kF (at the cost of introducing a factor 2), so that with
vanishing density it is ultimately sufficient to use the low-energy result [58] for
the T -matrix:

Tkk′ → T00 =
4πann

m
, (26)

where ann = −18.8 fm is the neutron-neutron scattering length. This yields
finally the gap equation

1 = −4kFann

π

∫ 1

0
dx

x2√
(1− x2)2 + (Δ/eF )2

, (27)

which in the limit Δ/eF → 0 is solved by [37,59,60,61]

Δ(kF ) kF →0−→ Δ0(kF ) =
8
e2

k2
F

2m
exp
[

π

2kFann

]
. (28)

This is the universal asymptotic result for the BCS pairing gap in a low-density
Fermi system with negative scattering length. Unfortunately its validity is lim-
ited to the region kF << 1/|ann| ≈ 0.05 fm−1, far below the densities of interest
for neutron star physics or even pairing in finite nuclei.

Going now beyond the BCS approximation, in the low-density limit one
should take into account the corrections to the interaction kernel that are of
leading order in density. Diagrammatically these are the polarization diagrams
of first order (i.e., comprising one polarization “bubble”) that are displayed in
Fig. 5. The interaction appearing in these diagrams is in the present case the
free scattering matrix T . It can be shown [59] that in the low-density limit it
is again sufficient to neglect the momentum dependence of the T -matrix, as in
(26). One obtains then for the lowest-order polarization interaction

W1S0(k, k
′) = −T 2

00

8π
1

2kk′

∫ k+k′

|k−k′|
dq q Π(q) , (29)

where

Π(q) = −mkF

π2

[
1
2

+
1− x2

4x
ln
∣∣∣∣1 + x

1− x

∣∣∣∣] , x =
q

2kF
(30)

�

�

(a) (b)
Fig. 5. (a) Bare potential and (b) first-order (direct and exchange) polarization dia-
grams contributing to the interaction kernel in the low-density limit
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is the static Lindhard function [58]. Thus the lowest-order polarization modifies
the BCS interaction kernel (18) by a (repulsive) term proportional to kF , whereas
any other polarization diagram contributes only in higher order of kF .

We can use this result and insert it into the previously obtained approxima-
tion in the BCS case:

Δ(kF ) kF →0−→ 8
e2

k2
F

2m
exp
[

π/2
κ + cκ2

]
, κ = kFann , (31)

where

c = − 2π
mkF

∫ 2kF

0

dq q
2k2

F

Π(q) =
2
3π

(1 + 2 ln 2) ≈ 0.506 (32)

accounts for the polarization effects to first order. Expanding now the argument
of the exponential up to second order in κ, one obtains for the ratio relative to
the BCS value, (28),

Δ(kF )
Δ0(kF )

= exp
[
−π

2
c
[
1− cκ +O(κ2)

]]
(33)

≈
[

1
(4e)1/3

](1−cκ)

(34)

kF →0−→ 1
(4e)1/3 . (35)

Let us stress that the above “derivation” of this result can only be considered
heuristic. A rigorous proof was given originally in Ref. [59].

Therefore, one arrives at the striking conclusion that in the low-density limit
the polarization corrections suppress the BCS gap by a factor (4e)−1/3 ≈ 0.45,
independent of the strength of the interaction ann. This is quite surprising, since
the polarization interaction clearly vanishes with vanishing density; its effect on
the pairing gap, however, does not. The reason is the nonanalytical dependence
of the gap on the interaction strength, as expressed by (28).

All this means that the BCS approximation cannot even be trusted at very
low density, and that one can in general expect quite strong modifications due
to polarization effects at higher density as well.

This low-density behavior of neutron pairing could be met in the study of
exotic nuclei with a long density tail or in nuclei embedded in a neutron matter
environment, as occurring in the neutron star crust.

3.2 General Polarization Effects

To go beyond the simple low-density approximations derived before requires
considerable effort and has in fact so far not been accomplished in a satisfactory
manner, so that ultimate results cannot be presented here. The reason is that
many effects that could be neglected in the low-density limit become important
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now, and that on the other hand the pairing gap is extremely sensitive to even
slight changes of the interaction kernel.

First, outside the low-density region kF << 1/|ann|, the interaction kernel
has to be extended beyond the lowest-order polarization diagrams. This means
summing up polarization diagrams of all orders in the particle-particle channel,
but also including them in the particle-hole channel, replacing the T -matrix by
the general particle-hole interaction F . In this way a self-consistent scheme is
established that is depicted in Fig. 6. It requires as input the Brueckner G-matrix

�
�
�
�� �� �

�

�
�
�
�
�
�
�
��

�

	

�
�
�
�
�

�

�

���

�

�

�

�

� �

�

�

�

� �
�� �

�

�

�

�

���
������
�����
�
�
�
��

� ���
������
�����
�

�

�

�

�

�

���
������
�����
�
�
�
��

� ���
������
�����
�
�
�
��

� ���
������
�����

� � � � ���

���
������
�����

���

��
�

���
���

��
�

���
���

��	

�

�
����� ��

�

��
�

���

���
���

���

��	

�

������












�
���
������
�����
�
�
�
��

� ���
������
�����







 

�
��

���	

�

������



















�


























�

��
���	

���
������
�����
�
�
�
��

� ���
������
�����
�
�
�
��

� ���
������
�����

� � � � ���

Fig. 6. Determination of the interaction kernel Γ in the gap equation (a): Polarization
diagrams appear in the particle-particle channel (b) as well as in the particle-hole
channel (c). The leading diagrams in these channels are the bare potential V (dashed
line) and the G-matrix (double-dashed line), respectively

and yields ideally the interactions in the particle-particle as well as particle-hole
channel, Γ and F , respectively. It is clear that in practice an exact solution is
impossible, but that usually crude approximations have to be performed that
cast a doubt on the reliability of the results that are obtained. We will later
discuss this point in some more detail.

Second, related to the previous item, the energy dependence of the full gap
equation [see (10b)] needs to be taken into account. This is obvious, since the
interaction kernel becomes now a complex, energy-dependent quantity. To our
knowledge, this problem has so far not been studied in detail in the literature. It
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is therefore not known how far the gap could be changed by this more elaborate
treatment of the equations.

Third, and in connection with the two previous points, the choice of a par-
ticular interaction kernel requires also the choice of a compatible self-energy
appearing in the gap equation. This will be explained in more detail in the
following section, as it has recently been addressed in the literature.

It should be clear by now that the influence of medium effects on pairing
constitutes an extremely difficult problem. Consequently the results that can be
found in the literature [13,62,63,64,65,66] addressing this task in certain approx-
imations agree only on the fact that generally a strong reduction with respect
to the BCS gap is obtained. A collection of these results is displayed in Fig. 7.
It can be seen that the precise amount and density dependence of the suppres-
sion vary substantially between the different approaches and must be considered
unknown for the time being.

The most advanced description of medium polarization effects is based on
the Babu-Brown induced interaction model [67,68,69,70,71,72]. The microscopic
derivation of the effective interaction starts from the following physical idea: The
particle-hole (p-h) interaction can be considered as made of a direct component
containing the short-range correlations and an induced component due to the
exchange of the collective excitations of the medium.

Let us consider a homogeneous system of fermions interacting via an instan-
taneous potential V , which is also translationally and rotationally invariant. Col-
lective excitations are described by the ring series, which can easily be summed
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Fig. 7. The 1S0 gap in pure neutron matter predicted in several publications taking
account of polarization effects. The curve in the background shows the BCS result
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up [58], and the p-h interaction can be written as (disregarding for the moment
spin degrees of freedom)

Vph(q) = V (q) +
Π(q)V (q)2

1−Π(q)V (q)
. (36)

In this simple case the interaction itself plays the role of the direct term and the
sum of the ring series that of the induced term.

In the nuclear case the presence of the hard core imposes the bare interaction
V to be renormalized in order to incorporate the short-range correlations. This
goal is reached by introducing the G-matrix, which sums particle-particle (p-p)
ladder diagrams to all orders, and the diagrammatic expansion can be recast
just replacing V by G. But now the new ring series cannot be summed up any
longer, mainly since the G-matrix is nonlocal. An averaging procedure has been
devised to bring the G-matrix into a local form G(q) [66]. Then, in analogy to
(36), the p-h interaction F is given by

F (q) = G(q) +
Π(q)G(q)2

1−Π(q)G(q)
. (37)

In a simplified version of the theory the direct term now coincides with the G-
matrix and the induced term is the approximate sum of the renormalized ring
diagrams. In Fig. 6 the direct term is represented by the first diagram on the
r.h.s. of the series (c). The next diagrams form the ring (or bubble) series.

But, since the RPA series with the G-matrix produces a too strong polariz-
ability of nuclear matter, in the Babu-Brown approach it has been proposed to
include in the RPA series the full p-h interaction itself, since the particle (hole)
coupling vertex with the p-h bubble can indeed be identified with the irreducible
p-h interaction. The series (c) of Fig. 6 is, in fact, the final result of such a proce-
dure, where the wiggles represent the effective p-h interaction F on either side.
If we denote by Fd the direct interaction (G-matrix in our case) and by Fi the
induced interaction, the effective p-h interaction can be written in the form (at
the Landau limit, in which p1 and p2 are restricted to the Fermi surface)

F (p1,p2) = Fd(p1,p2) + Fi(p1,p2;F ) , (38)

where Fi is, as said before, the RPA series of Fig. 6(c) with the G-matrix replaced
by F itself. The previous equation clearly entails a self-consistent procedure to
determine the interaction F (p1,p2). Referring to [66] for details, one may reduce
(38) to a numerically tractable form

F (q) = G(q) +
Π(q)F (q)2

1−Π(q)F (q)
, (39)

which corresponds to replacing the G-matrix by F in the induced term.
Once the irreducible p-h interaction F has been determined, one can con-

struct the irreducible p-p interaction Γ by performing the transformation of the
matrix elements of the interaction from the p-h to the p-p channel. However,
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this is not enough, since in the p-p channel a set of additional diagrams must
be added arising from p-h diagrams which are reducible in that representation.
After including these terms, the interaction contains both direct and exchange
terms, which guarantees antisymmetry and Landau sum rules and, in addition,
it should simultaneously make the nuclear matter Landau parameter F0 less
negative so that the stability condition is satisfied. The first contributions to
the p-p interaction are depicted in line (b) of Fig. 6. We stress once more that
they describe the influence of the medium polarization on the nucleon-nucleon
interaction within the induced interaction model of Babu-Brown.

We discuss now the effects of medium polarization on the superfluidity of
neutron stars in the channel 1S0. First of all, the irreducible p-p interaction
to be used in the pairing problem must not include any ladder sum already
included in the gap equation, and therefore the first term in line (b) of Fig. 6 is
the bare neutron-neutron interaction V . The next terms include the irreducible
p-h interaction in the vertices of the p-h bubble. If their momentum dependence
is neglected, these vertices can be identified with the Landau parameters [69].

In neutron matter the polarization of the medium is due to density fluctua-
tions and spin-density fluctuations given by

δρk = δρk↑ + δρk↓ , (40a)
δρk = δρk↑ − δρk↓ , (40b)

respectively. Solving the Babu-Brown self-consistent equation, (39), with the
G-matrix as direct interaction and the renormalized RPA series as induced in-
teraction, one determines the p-h interaction and eventually, after the Landau
angle expansion, the lowest-order Landau parameters F0, related to the nuclear
compression modulus, and G0, related to the spin waves. (In the following the
interaction will be expressed in terms of these two Landau parameters for sim-
plicity). Then the effective interaction is calculated including the diagrams of
Fig. 6(b). The pairing interaction in the 1S0 channel is then given by

Γ1S0 = V1S0 +
1

2k2
F

∫ 2kF

0
dq q

[
F 2

0 Π(q)
1− F0Π(q)

− 3G2
0Π(q)

1−G0Π(q)

]
. (41)

This equation shows that the medium screening effect is determined by the
competition between the attractive term induced by density fluctuations and
the repulsive term induced by spin-density fluctuations (first and second term
in the bracket, respectively).

As depicted in Fig. 8, the effect of the medium polarization is an overall
suppression of the gap due to the prevalence of the spin-density fluctuations
over the density fluctuations. A similar effect is found in a less crude calculation
[66], as shown in Fig. 7, where the peak value is shifted to higher density. Such a
suppression is common to all calculations existing in the literature even if, as to
its magnitude, the different predictions do not agree with each other, as shown
in Fig. 7.
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Fig. 8. 1S0 pairing gap in neutron matter as a function of the Fermi momentum kF .
The full curve corresponds to using the bare V14 potential as direct interaction. The
symbols show the effect of the medium polarization described in terms of the Landau
parameters, according to (41)

3.3 Self-energy Effects

Dynamical effects of the interaction on the gap function have been completely left
aside from the discussion on the medium polarization. So far no solution of the
gap equation has been attempted considering the irreducible interaction block
as an energy-dependent quantity. On the other hand the energy dependence in
the self-energy can affect deeply the magnitude of the energy gap in a strongly
correlated Fermi system such as nucleon matter [73,74].

To discuss self-energy effects we come back to the generalized gap equation
presented in section 1.1. Let us rewrite (10b) in the following form (for the 1S0
channel)

Δk(ω) = −
∫

d3k′

(2π)3

∫
dω′

2πi
Γk,k′(ω, ω′)

Δk′(ω′)
Dk′(ω′)

, (42)

with [cf. (8a) and (9)]

−Dk(ω) = [Gk(−ω)Gs
k(ω)]−1 = G−1

k (ω)G−1
k (−ω) + Δ2

k(ω) . (43)

The functions Gk(ω) and Gs
k(ω) are the nucleon propagators of neutron matter

in the normal state and in the superfluid state, respectively. The ω-symmetry in
the two propagators is to be traced to the time-reversal invariance of the Cooper
pairs. The effective interaction Γ is the block of all irreducible diagrams of the
interaction. Since we want to focus only on the self-energy effects, we assume the
interaction to be the bare interaction Vk,k′ , as in BCS. Then the pairing gap does
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not depend on the energy (static limit), i.e., Δk(ω) ≡ Δk, and the ω-integration
can be performed in (42), once the self-energy has been determined. A general
discussion of the analytic ω-integration of the gap equation has been is given in
Ref. [74]. Here we follow a simplified treatment based on the fact that, at each
momentum k, the main contribution to the ω-integration comes from the pole
of Gk(ω). This latter is the solution of the implicit equation

ωk = k2/2m + Σk(ωk)− μ . (44)

Expanding the self-energy around the pole ωk amounts to expanding G−1 itself,
which yields

G−1
k (ω) ≈

(
1− ∂Σ

∂ω

∣∣∣
ω=ωk

)
(ω − ωk) , (45)

where the prefactor on the r.h.s. is the inverse of the quasiparticle strength Zk

that will be discussed later. Then the energy dependence of the kernel D−1
k (ω)

takes the simple form

D−1
k (ω) =

Z2
k

ω2 − ω2
k − (ZkΔk)2

, (46)

and the ω-integration can be performed in the usual way, leading to

Δk = −
∫

d3k′

(2π)3
(ZkVk,k′Zk′)

Δk′

2
√

ω2
k′ + Δ2

k′
. (47)

Comparing with the BCS result, (14a), the new gap equation contains the quasi-
particle strength Z to the second power. Since Z is significantly less than one in
a strongly correlated Fermi system, a substantial suppression of the energy gap
is to be expected.

Moreover Z deviates from unity only in a narrow region around the Fermi
surface and hence it is not a severe approximation to restrict the ω-integration to
only the pole part at the Fermi energy. Expanding then Σk(ω) around the Fermi
surface (ω = 0 and k = kF ), (44) is easily solved and we get ωk ≈ (k2−k2

F )/2m∗,
where m∗ is the effective mass at kF [see (53)]. The gap equation becomes

Δk = −Z2
F

∫
d3k′

(2π)3
Vk,k′Δk′

2
√

[(k′2 − k2
F )/2m∗]2 + Δ2

k′
, (48)

where Z2
F is the quasiparticle strength at the Fermi surface.

As is well known the pairing modifies the chemical potential which is calcu-
lated self-consistently with the gap equation from the closure equation for the
average density of neutrons

ρ = 2
∫

d3k

(2π)3

∫
dω
2πi

Gs
k(ω+) (49)

≈ ZF

∫
d3k

(2π)3

[
1− (k2 − k2

F )/2m∗√
[(k2 − k2

F )/2m∗]2 + Z2
FΔ

2
k

]
. (50)
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The latter approximation is sufficient to investigate the self-energy effects.
Before we present the predictions based on (48), we discuss some properties

of the self-energy Σk(ω) of neutron matter. In the Brueckner approach [75] the
perturbative expansion of Σ can be recast according to the number of hole lines
as follows

Σk(ω) = Σ
(1)
k (ω) + Σ

(2)
k (ω) + . . . . (51)

�k��� � � � � � �

G

G

Fig. 9. Hole-line expansion of the self-energy

The on-shell values of Σ(1) represent the Brueckner-Hartree-Fock (BHF) mean
field (first diagram in Fig. 9); the ones of Σ(2) represent the so-called rearrange-
ment term (second diagram in Fig. 9), which is the largest contribution due
to ground-state correlations. The off-shell values of the self-energy are required
to solve the generalized gap equation. Fig. 10 displays a typical result for the
off-shell neutron self-energy Σk(ω) calculated up to the second order of the hole-
line expansion. The calculations are based on Brueckner theory adopting the
continuous choice as auxiliary potential [76].

Since we are interested in the behavior of the self-energy around the Fermi
surface (k = kF and ω = 0), we may use the expansion

Σk(ω) ≈ ΣkF
(0) +

∂Σ

∂ω

∣∣∣∣
F

ω +
∂Σ

∂k

∣∣∣∣
F

(k − kF ) . (52)

Fig. 10. Off-shell self-energy in neutron matter at kF = 0.8 fm−1. Solid curves: BHF
approximation Σ(1). Dashed curves: rearrangement contribution Σ(2). The Argonne
V14 potential [24] has been used in the Brueckner calculations
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In this case the quasiparticle energy takes the simple form

ωk ≈
k2 − k2

F

2m
1 + (m/kF )(∂Σ/∂k)|F

1− (∂Σ/∂ω)|F
=

k2 − k2
F

2m∗ . (53)

In the previous equation we have introduced the effective mass m∗/m as the
product of the e-mass me and the k-mass mk, which are defined respectively as
follows [75]

me

m
= 1− ∂Σ

∂ω

∣∣∣
F

=
1
ZF

, (54a)

mk

m
=
[
1 +

m

kF

∂Σ

∂k

∣∣∣
F

]−1

. (54b)

The partial derivatives are evaluated at the Fermi surface. The k-mass is related
to the non-locality of the mean field and, in the static limit (ω = ωF ), coincides
with the effective mass. This quantity is of great interest in heavy-ion collision
physics, since the transverse flows are very sensitive to the momentum depen-
dence of the mean field. The e-mass is related to the quasi-particle strength.
This latter gives the discontinuity of the neutron momentum distribution at the
Fermi surface, and measures the amount of correlations included in the adopted
approximation.

Fig. 11. Effective masses in neutron matter for three densities: effective mass m∗ (up-
per panels) and e-mass (lower panels). Dashed lines correspond to Σ(1) and solid lines
to Σ(1) + Σ(2)
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From Σk(ω) the effective masses are extracted according to (54a) and (54b).
They are depicted in Fig. 11, where the full calculation is compared to that in-
cluding only the BHF self-energy. We may distinguish two momentum intervals:
at k ≈ kF the momentum dependence of the effective mass m∗ is characterized
by a bump, whose peak value exceeds the value of the bare mass; far above kF the
bare mass limit is approached. The contribution from the rearrangement term
exhibits a pronounced enhancement in the vicinity of the Fermi energy, which is
to be traced back to the high probability amplitude for p-h excitations near εF
[76]. At high momenta this contribution vanishes. One should take into account
that in this range of kF the neutron density is quite small (ρ = 0.074 fm−3 at the
maximum kF = 1.3 fm−1). This behavior of the effective mass m∗ is mostly due
to the e-mass, as shown in the lower panels of Fig. 11. In all panels of Fig. 11
is also reported for comparison the effective mass in the BHF limit (only Σ(1)

included), which exhibits a much less pronounced bump at the Fermi energy.
With the off-shell values of the self-energy discussed above as input, the

gap equation has been solved in the form of (48), coupled with (50) [77]. This
is a quite satisfactory approximation, especially in view of studying the self-
energy effects on pairing. The Argonne V14 potential has been adopted as pairing
interaction, which is consistent with the self-energy data for which the same force
has been used. The results are reported in Fig. 12 for a set of different kF -values.
The diamonds connected by a solid line represent the solution of (48) replacing
the effective mass by the free one, m∗ = m, together with Z = 1. This is very
close to the prediction obtained from the BHF approximation for the effective

Fig. 12. Energy gap in different approximations for the self-energy: free s.p. spectrum
(solid line); effective mass with ZF = 1 (upper dashed line); Z from Σ(1) (long dashed
line); Z from Σ(1) + Σ(2) (lower dashed line)
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mass m∗, but still keeping Z = 1 (fancy crosses connected by the dashed line).
This similarity stems from the fact that at the Fermi surface m∗/m from BHF
is close to one, as shown in Fig. 11. The self-energy effects are estimated in two
approximations. In the first one m∗ and the Z-factor are calculated from a BHF
code. In the considered density domain the Z-factor ranges around 0.9. Despite
its moderate reduction a dramatic suppression of the gap is obtained, as shown by
the long dashed line in Fig. 12. It is due to the exponential dependence of the gap
on all quantities. Still a further but more moderate reduction is obtained when
the rearrangement term is included in the second approximation. The smaller
Z-factor (Z ≈ 0.83 at kF = 0.8 fm−1) is to a certain extent counterbalanced by
an increase of the effective mass (m∗/m ≈ 1.2 at the same kF ).

From the previous discussion we may conclude that including self-energy
effects is an important step forward in understanding the pairing in nucleon
matter, but one should also include, on an equal footing, vertex corrections.

4 Conclusions

This chapter addressed the present status of the theoretical progress on the
superfluidity of neutron matter and the microscopic calculations of nucleonic
pairing gaps relevant for the conditions that are encountered in the interior of
a neutron star. We have seen that most of the results that can be found in the
literature, are obtained within the BCS approximation.

Unfortunately, as has also been pointed out, this approximation cannot be
considered reliable in any region of density, since neutron matter is a strongly
correlated Fermi system. The same nucleons that undergo pairing instability
and form Cooper pairs also act to screen the pairing interaction. This requires
necessarily to improve the interaction kernel by in-medium polarization correc-
tions that, at the present time, can be treated with confidence only at very low
density, where the ring series can be truncated at the order of the one-bubble
term.

The induced interaction approach is a promising candidate to describe these
effects, but its predictions are still affected by too severe approximations. The
existing calculations addressing this problem point to a substantial reduction of
pairing in the (T = 1) 1S0 channel with respect to the BCS results. In the 3PF2
channel, no estimate of polarization effects has been made so far at all.

Also self-energy effects, when properly included in the gap equation, strongly
influence the pairing mechanism. We saw in fact that the gap is reduced with
the square of the quasi-particle strength Z.

In any case it remains the problem of a complete solution of the generalized
gap equation, taking into account simultaneously screening and self-energy cor-
rections, which moreover have to be treated on the same footing. This latter goal
remains a considerable theoretical challenge for the future.

Due to lack of space and time we have not discussed more speculative subjects
like pairing in isospin asymmetric matter, relativistic effects on pairing, hyperon
pairing, etc., which might also have relevance for neutron star physics.
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16. P. Nozières, Le problème à N corps (Dunod, Paris, 1963).
17. P. Nozières, Theory of Interacting Fermi Systems (Benjamin, New York, 1966).
18. J. R. Schrieffer, Theory of Superconductivity (Addison-Wesley, New York, 1964).
19. A. B. Migdal, Theory of Finite Systems and Applications to Atomic Nuclei (Ben-

jamin, New York, 1964).
20. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).
21. M. Baldo, I. Bombaci, and U. Lombardo, Phys. Lett. B283, 8 (1992).
22. M. Baldo, U. Lombardo, and P. Schuck, Phys. Rev. C52, 975 (1995).
23. M. Lacombe, B. Loiseaux, J. M. Richard, R. Vinh Mau, J. Côté, D. Pirès, and
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47. A. Sedrakian, G. Röpke, and T. Alm, Nucl. Phys. A594, 355 (1995).
48. A. Sedrakian, T. Alm, and U. Lombardo, Phys. Rev. C55, R582 (1997).
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Relativistic Superfluid Models
for Rotating Neutron Stars

Brandon Carter

Observatoire de Paris, 92195 Meudon, France

Abstract. This article starts by providing an introductory overview of the theoret-
ical mechanics of rotating neutron stars as developed to account for the frequency
variations, and particularly the discontinuous glitches, observed in pulsars. The theory
suggests, and the observations seem to confirm, that an essential role is played by the
interaction between the solid crust and inner layers whose superfluid nature allows
them to rotate independently. However many significant details remain to be clarified,
even in much studied cases such as the Crab and Vela. The second part of this article
is more technical, concentrating on just one of the many physical aspects that needs
further development, namely the provision of a satisfactorily relativistic (local but not
microscopic) treatment of the effects of the neutron superfluidity that is involved.

1 Elementary global mechanics of rotating neutron stars

1.1 Introduction

Long before their observational detection as pulsars, theorists were well aware [1]
of the special physical interest of neutron stars – whose existence was confidently
predicted – as well as of the (still entirely speculative) possibility of other more
exotic (e.g. strange) stars of comparable compactness, meaning a radius only a
few times larger than the Schwarzschild limit value, R = 2GM/c2, for a mass
comparable with that of our Sun. Having presumably been formed by collapse
of a stellar core that marginally exceeds the Chondrosternal limit for for a self
gravitating body with insufficient degeneracy pressure, a typical neutron star
can be expected to a have a mass rather close to this limit, which – in terms of
Newton’s constant G, the speed of light c, the Dirac Planck constant �, and the
proton mass mp – is given very roughly by the simple formula

M ≈
(

�c

G

)3/2
m−2

p
, (1)

whose derivation is based just on the supposition that mp gives a rough estimate
of the mass per cubic Fermi length, regardless whether the degenerate relativistic
fermions in question are electrons (as in an ordinary white dwarf) neutrons, or
even quarks.

Unlike what was possible when superfluidity of the neutron matter in such
compact stars was originally predicted [2] by Migdal, present day article accel-
erators can explore the physics of individual particle at energies that are now
approaching the order of a TeV. Nevertheless, although their levels – from MeV
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to at most the order of GeV – are only moderate by such modern standards, the
thermal energies – and particularly the Fermi energies – characteristic of matter
in neutron stars remain beyond the range accessible in the laboratory for bulk
matter.

For a mass near the value given by (1), the condition that the stellar radius
be large compared with the Schwarzschild value, R = 2GM/c2, places an upper
bound

ρ∗ 	
( c

�

)3
m 4

p
(2)

on the mean stellar density ρ∗, and hence also on the central density (since
unlike what is possible other kinds of stars, a neutron star cannot have a density
profile that is sharply peaked at the center). While less compact neutron star
configurations (with lower mass and larger radius) can exist in principle, it is
hard to see how they could be created in nature, so a typical example can be
expected to have a central density that is not so very far below what is permitted
by this Oppenheimer - Volkoff bound (2). Since this bound is interpretable as
the order of a proton mass per cubic proton Compton length, it is evidently
quite a lot higher than the density of the order of a proton mass per cubic pion
Compton length that characterizes ordinary nuclear matter. In terms of the pion
mass mπ this ordinary nuclear density will be given in order of magnitude by

ρnuc ≈
( c

�

)3
m 3

πmp , (3)

which is a few times 1014 gm/cm3. The prediction that typical neutron star
core densities are thus well beyond what is easily accessible to experiment is
one of the reasons why it is so interesting, not just for astronomy, but also for
the basic physics [3,4] of bulk matter at the corresponding intermediate energy
levels, to acquire and analyze as much observational information as possible
about neutron stars (as well as “strange” or other comparably compact stars,
which, if they exist, will also have core densities in the same range).

In addition to the limited amount of such information that is available from
other mechanisms (such as binary orbital behavior), we are fortunate to have at
our disposal an enormous and steadily increasing body of relevant information
provided ( see Figure 1) by pulsar timing measurements: radio (and in some
cases optical or other) observations provide continuous high (sometimes within
10−9) precision monitoring of pulsar frequencies, which are generally believed to
correspond directly to the rotation frequency Ω of the underlying star, or more
precisely to that of its rigidly rotating outer “crust”.

The present article (like a briefer proceeding review [5]) is intended as a
self contained introduction to the theory of the phenomena most relevant to
such observations. It is meant to be accessible to non-specialist readers, who are
assumed just to have a grounding in general physics, at the level provided by
Landau and Lifshitz [6], in areas including relativistic gravitation theory, and
non relativistic superfluidity and superconductivity theory.

As discussed in detail in accompanying articles in this volume, outside a still
mysterious core (that may consist of quark matter) neutron stars are generally
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believed to consist essentially of a neutron fluid interior and a surrounding crust.
The outer crust material is qualitatively similar to an ordinary metal, consisting
of baryons concentrated (as a majority of neutrons with a minority of protons)
in nuclei in a degenerate Fermi type sea of electrons at concentrations up to
and beyond the white dwarf limit, where the electrons become relativistic, at a
density given in terms of the electron mass me by

ρrel ≈
( c

�

)3
m 3

e mp , (4)

whose value, of the order of 107 gm/cm3, corresponds to about one proton mass
per cubic electron Compton length.

The transition to the qualitatively different kind of material that makes the
behavior of neutron stars so very different from that of ordinary degenerate
electron supported white dwarf stars occurs at a critical “neutron drip” density
ρdrip that is reached when the Fermi energy of the degenerate electrons becomes
comparable the binding energy Enuc per baryon in a nucleus, whose value is
of the order of the Fermi energy of the protons and neutrons when their mean
separation is of the order of a pion Compton length, i.e. Enuc ≈ (mπc)2/2mp .
Above this density,

ρdrip ≈
( c

�

)3( m 3
π

2mp

)2
, (5)

which works out to be a few times 1011 gm/cm3, the crust matter will still
contain positively charged carbonic nuclei in a negatively charged Fermi sea
of electrons, but there will now also be a third constituent consisting of freely
moving neutrons outside the nuclei.

The use of the term “crust” to describe the layers both above and below
the critical value (5) is motivated by the consideration that the ionic nuclei will
crystallize as a Coulomb lattice whose large scale behavior will be that of an
elastic solid as soon as the star has cooled sufficiently. Except for a very thin
outer surface layer with density below the white dwarf limit (4) that may remain
liquid as a relatively shallow “ocean”, the rest of the crust is expected [7] to have
solidified by the time the neutron star temperature has dropped below the MeV
level, which will be reached within a few months of its formation. Due to the
high conductivity of the degenerate electrons the outer magnetic field will be
firmly anchored in this crust, whose rotation rate is therefore what is measured
directly by pulsar frequency observations.

For the purpose of explaining these observations (see Figure 1) the most
interesting feature of the crust is the presence of the interpenetrating neutron
fluid in the inner crust, at densities ranging from the critical “drip” value (5)
all the way up to the nuclear value (3) that is reached at the base of the crust
beyond which the ions dissolve. In the relatively low temperatures (below an
MeV) that are relevant it is generally believed [8,9] that the unconfined neutrons
(like those within the nuclei) will form Cooper type pairs that will form a opsonic
condensate. The interpenetrating neutron constituent is thereby endowed with
the property of superfluidity, which enables it to flow freely past the metallic
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lattice (and the electron sea to which the lattice is electrically coupled) in the
manner illustrated schematically in the following diagram (using hyphens to
indicate the negatively charged electrons, crossed circles to indicate the positively
charged nuclei, and double arrows to indicate relatively moving Cooper pairs of
neutrons):

− − − ⇒ − − − ⇒ − − − ⇒ − − − ⇒ − − −
− ⇒ − − −

⊕
− − − ⇒ − − −

⊕
− − − ⇒ −

− − − ⇒ − − − ⇒ − − − ⇒ − − − ⇒ − − −
− ⇒ − − − ⇒ − − − ⇒ − − − ⇒ − − − ⇒ −
− − − ⇒ − − − ⇒ − − − ⇒ − − − ⇒ − − −
−

⊕
− − − ⇒ − − −

⊕
− − − ⇒ − − −

⊕
−

− − − ⇒ − − − ⇒ − − − ⇒ − − − ⇒ − − −
− ⇒ − − − ⇒ − − − ⇒ − − − ⇒ − − − ⇒ −
− − − ⇒ − − − ⇒ − − − ⇒ − − − ⇒ − − −
− ⇒ − − −

⊕
− − − ⇒ − − −

⊕
− − − ⇒ −

− − − ⇒ − − − ⇒ − − − ⇒ − − − ⇒ − − −

The unconfined neutrons thus constitute a massive component that can ro-
tate independently of the crust, thereby – as explained below – providing the
most promising kind of mechanism for explaining the observed pulsar frequency
glitches (see Figure 1).

At the base of the inner crust, at densities above the nuclear value given by
(3), it is generally believed that the neutron fluid and ionic constituents merge to
form a uniform fluid composed mainly of (superfluid) neutrons but with an inde-
pendently moving (superconducting) photonic constituent, and with the further
complication [10] that instead of forming ordinary scalar Cooper type pairs the
neutrons at this deeper level condense as pairs of spin 1. At even higher densi-
ties, beyond that of ordinary nuclear matter, various more or less exotic possibil-
ities have been suggested, but no firm consensus has yet emerged. For example
Lengthening has predicted [11,12] that there will be a hybrid zone in which
negatively charged drops of quark matter will condense within the surround-
ing positively charged carbonic liquid, and moreover that they will crystallize to
form an ionic solid analogous to that of the crust. At even higher densities, as the
maximum allowed by (2) is approached, one might expect that there would be an
inner core where the drops merge to form another homogeneous superconduct-
ing superfluid zone, that (unlike the outer, carbonic core) would be constituted
purely of quark matter, in which interesting new kinds of superfluidity and su-
perconductivity [13,14,15,16] could occur. Like the somewhat better understood
inner crust and outer core regions, these very high density inner regions may
also be relevant to the interpretation of pulsar frequency observations such as
are illustrated in Figure 1.

The overall situation is not just that the global structure and behavior of
a neutron star is rather complicated, but furthermore that (as a fortiori for
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Fig. 1. Qualitative sketch of a typical observational plot of pulsar angular velocity
Ω against time t. The long down - pointing arrow indicates the negative change ΔΩ
during a period of steady slow down. The short up - pointing arrow indicates (on
an exaggerated scale) the positive jump δΩ during a glitch (consisting of a sharp
discontinuity followed by a transient readjustment).

strange stars if they exist) many important aspects remain so unclear that –
except in the crust region (or for very low mass neutron stars) for which a
reasonable degree of consensus already prevails – it is hardly worthwhile yet
even to start the detailed numerical calculations that will be needed later on.
Before a convincingly realistic neutron star model can be developed even as a
rough approximation many underlying physical issues will need to be dealt with,
of which the most basic are concerned with the qualitative nature of matter at
the supranuclear densities attained in the cores of all neutron stars above or
near the precise Chondrosternal limit value, M �

√
2M� (where M� is the

solar mass) though not for very low mass neutron star configurations (which are
at least of academic interest, even though it is hard to see how they could be
created in nature.

From the point of view of the interpretation of observational data, many less
fundamental but technically non-trivial issues need to be be clarified. Among
the other accessory issues (concerning matter at less extreme densities) that
also need to be dealt with, the one with which the present article will be pri-
marily concerned is that of the consequences of the predicted superfluidity. The
final sections will concentrate on the results of recent progress on the devel-
opment of an appropriately relativistic treatment as an improvement (in view
of immediate coherence, as well as the long term objective of precision) over
the non-relativistic treatment that has until now been mainly used, not just
for superfluidity but also for many other relevant phenomena. However before
going into the technical aspects of the relativistic treatment, the first part of
this article will provide a brief survey of the reasons why the phenomenon of
superfluidity is particularly important for relating theoretical understanding of
the inner structure of the neutron star to the available observational data, of
which the most richly informative part (see Figure 1) comes from pulsar timing.
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1.2 Minimal two component rotating star models

As emphasized above, for many of the most important questions about the global
structure of neutron stars, no quantitative agreement is available or to be ex-
pected for a long time yet. There are however several essential qualitative fea-
tures on which practically all neutron star theorists do seem to agree already. In
relation to the pulsar timing observations, the most important of these agreed
features [7] is the presence of a rigidly corotating structure that may or may not
include part of the core but certainly includes a solid outer crust to which is
anchored the magnetic field configuration that gives rise to the observed radio
and other emission. The next most important feature, common to all viable the-
oretical scenarios albeit of a more subtle nature, is the presence of some (maybe
many) effectively superfluid (or superconducting) zones that can rotate indepen-
dently [8] of the rigidly rotating crust structure whose angular velocity, Ωc say,
is presumed to be the same as the Ω that is directly observed.

The minimal agreement about these two essential features is what underlies
the longstanding, widespread, and enduring popularity of a corresponding kind
minimally complicated rotating neutron star model, involving just two indepen-
dently rotating parts: a “corotating crust” part with (directly observed) angular
velocity Ωc and a “superfluid neutron” part with a possibly different angular ve-
locity Ωn (representing the average of what in a more detailed treatment would
be a spatially variable angular velocity distribution).

The basic postulate of such a minimal model is that the total angular mo-
mentum J of the star is the sum of decoupled parts,

J = Jc + Jn , (6)

with
Jc = IcΩc , Jn = InΩc , (7)

where Ic and In are separate moments of inertia that are supposed to remain
constant during a process of continued variation governed by an external torque
Γex. (A more sophisticated variant of this model would allow for cross coupling,
whereby Jc is affected by Ωn and vice versa: a small cross coupling of this kind
would inevitably be present [17] in an exactly relativistic description, and a
possibly more important cross coupling effect is to be expected from the effect
– to be discussed below – of superfluid momentum “entrainment”, whose likely
relevance in neutron star matter was originally pointed out in the context of
proton superconductivity [18,19].)

The external couple Γex represents the effect of the magnetic field anchored
in the rotating crust, which, in view of the high conductivity of the crust is
generally assumed to remain constant over timescales long compared with those
(at most a few years, since the oldest pulsar observations go back only to 1968)
of the observed fluctuations. The effect of this steady couple is of course to cause
a total angular momentum loss rate given by

J̇ = Γex < 0 . (8)
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If the angular velocities were locked together, Ωn = Ωc = Ω, this would give
Ω̇ = Γex/I with

I = Ic + In , (9)

and this relation will in any case be true for the long term average, 〈Ω〉 i.e. since
(for reasons to be discussed below) the separate angular velocities can never get
too far apart, the long term slowdown of the observed pulsar frequency allows
the torque involved to be estimated as

Γex = I 〈Ω̇〉 . (10)

in which, for neutron stars with mass M � 3M�/2 (which, consistently with
the theoretical prediction (1), is what has been found [20] for the few cases in
which the mass is reliably measurable), the total moment of inertia (unlike the
distinct parts In and Ic for which different theoreticians have rather diverse ideas
in various cases) can be evaluated in a generally agreed manner, which leads [21]
to estimates of about 102M� Km2 within a factor of order unity (whereas the
uncertainty range would be much larger for a neutron star nearer the upper mass
limit).

The idea of the two component model is that as well as supporting the
effect of the external torque Γex, the crust component exerts an internal torque
Γin on the “superfluid neutron” component, which therefore obeys an evolution
equation of the form

J̇n = Γin , (11)

while, in order to be consistent with (9) the crust component must obey

J̇c = Γex − Γin , (12)

in which, unlike the external torque Γex, the internal torque is not constant but
proportional to the angular velocity difference

Γin = −InIc
I

ω

τ
, ω = Ωn −Ωc , (13)

where τ is a damping timescale whose estimation will be discussed below. The
chosen normalization of this timescale is such that, according to the preceding
equations, the angular velocity difference will satisfy a differential equation of
the simple form

ω̇ +
ω

τ
= − I

Ic
〈Ω̇〉 , (14)

in which the right hand side is a constant that fixes the saturation limit

ω → ωs , ωs = − I

Ic
〈Ω̇〉 τ > 0 , (15)

to which the difference ω will tend in the long run, unless this continuous evo-
lution process is interrupted by a “glitch”. So long as no such interruption has
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occurred, the angular velocity difference will be given as a function of the time
t by an expression of the form

ω = ωs + (ω0 − ωs)e−t/τ , (16)

where ω0 is a constant of integration interpretable as the value of ω when the
clock time t was set to zero.

1.3 The problem of accounting for glitches

Some of the strongest observational evidence in favor of the theoretical picture
epitomized by the kind of highly simplified 2 component neutron star model
described in the previous section is provided by a phenomenon in which the
continuous evolution described by this model is subject to a temporary model
break down. The phenomenon in question is what is known as a glitch (see
Figure 1) during which (with a rise time too short to be measured, at most
a few hours and probably much less) the observed angular frequency Ω of an
isolated pulsar undergoes a positive discontinuity, δΩ > 0, that partially cancels
the loss ΔΩ during the preceding period of continuous slowdown.

Since there is no imaginable way the external torque could suddenly become
very large (nor any observational evidence that the associated pulsar emission
process changes significantly at all during a glitch) there can be no corresponding
discontinuity in the angular momentum. This means that, if we want to use a
model only involving a single component, it will be necessary to take account
of variation of the moment of inertia, whose total I will evidently undergo a
negative variation δI given, for a glitch of amplitude δΩ, by

δJ = 0 ⇒ δI = −I δΩ

Ω
. (17)

The earliest theory designed to account for this phenomenon, as first observed
in the Crab and Vela pulsars, was based on the first of what were presented in
the preceding section as generally agreed features of neutron stars, namely the
presence of a solid crust structure, but on the basis of a single component model
taking no account of the second generally agreed feature (namely the possibility
of independently rotating parts). The idea [22,8,23] was that the rigidity of the
solid crust would tend to prevent the decrease in moment of inertia that would
necessarily accompany the loss of angular momentum in a purely fluid star. In
a simple rotating fluid star model, the oblateness due to centrifugal force would
give rise to a variable moment of inertia that would be expressible for low values
of the angular velocity by an expression of the quadratic form

I � I0

(
1 +

Ω2

Ω 2∗

)
, (18)

where I0 is the value of the moment of inertia in the non-rotating spherical limit
and Ω∗ is a constant specifying the relatively high value of the angular velocity
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(which will be given in terms of the mean density subject to (2) by the rough
order of magnitude estimate Ω 2

∗ ≈ G ρ∗) that would be necessary for deviations
from spherical symmetry to be of order unity. Whatever may have happened
immediately after the birth of the neutron star, no such rapid rotation still
occurs in any of the (at least centuries old) pulsars that are actually observed
today, for which the condition Ω2 	 Ω 2

∗ is always satisfied.
For a simple perfect fluid star model, the effect of the external torque (8)

during an extended time interval Δt would be to cause an angular momentum
loss, ΔJ � ΓexΔt < 0 that would be accompanied by a corresponding angular
velocity variation ΔΩ < 0, which according to (18) would entail a decrease in
moment of inertia given by

ΔI � 2I
Ω2

Ω 2∗

ΔΩ

Ω
< 0 . (19)

Due to the solidity of the crust, which tends to preserve the more highly elliptic
initial configuration, the actual change in the moment of inertia will fall short of
what is predicted by this formula, but at some stage the strain will build up to
the point at which the solid structure will break down. The implication is that
there will then be a “crustquake”, in which the solid structure suddenly changes
towards what the perfect fluid structure would have been, thereby changing the
moment of inertia by an amount that will be at most of the order of the upper
limit given by

δI ∼< ΔI, (20)

where ΔI is what is given by (19), and that will be considerably less than this
if the crust rigidity is low. According to (17) the corresponding positive angu-
lar velocity discontinuity δΩ associated with the continuous negative angular
velocity change ΔΩ since the preceding glitch will be subject to the limit

δΩ ∼< −2
Ω2

Ω 2∗
ΔΩ . (21)

The preceding formula provides an order of magnitude limit that must be
satisfied by a rather large margin if the rigidity is low but that is entirely con-
sistent with what is observed in the case of the Crab pulsar, for which typical
glitches are characterized by δΩ ≈ 10−8Ω. However almost immediately after it
was first proposed, it began to be recognized [7] that this rather obvious mech-
anism would not be sufficient to account for the much larger glitches that are
frequently observed in cases such as that of the Vela pulsar, for which typical
glitch amplitudes are characterized by δΩ ≈ 10−6Ω ≈ −10−2ΔΩ.

Since it was first suggested by pioneers such as Anderson and Itoh [24], the
generally accepted way of getting round this limitation – namely that the likely
changes of the moments of inertia will be far too small to account for frequent
giant (Vela type) glitches – is to drop the single component description in favor
of the two component description in which glitches can be accounted for even
if (as assumed in its simplest version) the relevant moments of inertia undergo
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no significant change at all. The essential point is that the consideration that
the very short glitch duration excludes any significant jump in the total angular
momentum does not rule out the possibility of impulsive transfer of angular
momentum between the two components provided they balance out:

δJ = 0 ⇒ δJc = −δJn , (22)

so that
δΩn = − Ic

In
δΩc . (23)

The idea is that between the glitches the weak coupling mechanism described by
(14) allows the slowdown of the “neutron superfluid” angular velocity Ωn to lag
behind that of the crust component which is what is presumed to be actually
observed, Ω = Ωc, so that during the preceding period Δt the angular velocity
difference ω will be positive. It is generally supposed that (for diverse reasons to
be discussed below) this angular velocity difference gives rise to stresses that are
partially relaxed in the glitch process, whose onset occurs when the difference
ω reaches a critical glitch inducing value ωg say that, in order to be attainable
must be less than the limit ωs given by (15) – a condition that would fail if the
relaxation timescale τ were too short.

Leaving aside cases for which ωg > ωs (whose evolution will be of the glitch
free kind recently investigated [25] by Sedakian and Cordes) as well as the
marginal case in which ωg ≈ ωs, i.e. subject to the proviso that there is a safe
margin ωg 	 ωs, the evolution equation (16) will be replaceable by the linear
relation

ω

ωs
=

ω0

ωs
+

t

τ
, (24)

in which each of the terms is small compared with unity. Successive glitches
bring about negative adjustments δω that are needed to cancel out the cumula-
tive effect of the positive variations Δ that develop during the duration of the
interglitch periods governed by (24), so that on average they cannot deviate too
much from the order of magnitude estimate given simply by

δω ≈ −Δω , (25)

in which, by (15) and (24), the deviation built up during an interglitch interval
of duration Δt will be given simply by

Δω = − I

Ic
〈Ω̇〉Δt . (26)

Using (23) to eliminate the unobservable jump δΩn from the difference δω =
δΩn− δΩc, the magnitude of the observable jump δΩc can be estimated by (25)
as

δΩc ≈
In
I

Δω . (27)
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Since the observable interglitch frequency variation will be given roughly by
ΔΩc � 〈Ω̇〉Δt one sees from (26) and (27) that it provides a corresponding
estimate

δΩc ≈ −
In
Ic

ΔΩc , (28)

for the observable frequency jump during a glitch. The presumption that Ωc
is identifiable with the Ω that is observed allows us to compare this with the
previous upper limit (21) that was obtained for the single component model
with variable moment of inertia. It can be seen that the difference is simply that
the small factor (Ω/Ω∗)2 in the upper limit for the single component model is
replaced, in the two component fixed moment of inertia model, by the ratio In/Ic
whose value is highly uncertain (in view of our lack of firm knowledge about what
goes on in the core of the neutron star) but can plausibly be supposed to be of
the order of unity, which is what is needed to account for the frequent very large
glitches (with δΩ ≈ −10−2ΔΩ) that are observed in examples such as Vela.

1.4 The question of pinning and the damping timescale

The foregoing estimate (28) is not sensitive to the particular value of the damping
timescale τ except that it is assumed to be large compared with the interglitch
period Δt which is usually several months or more. This requirement might at
first sight appear to be incompatible with observations of post glitch relaxation,
in which shorter timescales of only a few weeks have been shown to be involved.
Such discrepancies are however to be expected on the basis of our general qual-
itative understanding [26] of what is involved. The strong density gradients in
the star imply the existence of many different zones in which differential rotation
with a wide range of damping timescales can occur. Our simplified two compo-
nent description of glitches depends on taking the part with moment of inertia
In to correspond to a substructure for which the relevant damping timescale
timescale τ is very large. A formally similar two constituent model might also
be used for describing post glitch relaxation with much shorter timescales, but
for such an application the substructure with moment of inertia In would have
to be reinterpreted as corresponding to some other part of the star. Of course
if we wanted to describe both the glitches and the postglitch relaxation, in a
single coherent framework, we would need to amalgamate the separate two com-
ponent models so as to obtain a more elaborate model (such as has recently been
used [27] for the analysis of precession) with three or more independent compo-
nents (and with not just a single damping timescale but an antisymmetric matrix
of mutual damping coefficients). Although the construction of such composite
models is straightforward in principle, most authors have so far (quite reason-
ably) preferred to concentrate on particular aspects for which a less intricate
description is adequate.

Even for applications, such as the glitch model of the previous section, for
which a two component description is adequate as a lowest order approximation,
the estimation of the relevant damping timescale remains a subject of great un-
certainty. The situation has however been clearer since the general question
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of quasi stationary equilibrium in a rotating superfluid was systematically ad-
dressed in the context of neutron stars by Alpar and Sauls [28], Bildsten and
Epstein [29] and the Sedrakians [30], who drew attention to the consideration
that long damping timescales can arise not just from weak but also from strong
coupling. These authors considered the basic general problem of a two con-
stituent superfluid model of the simplest kind in a local configuration of differ-
ential rotation about a fixed axis characterized by a unit 3 vector, ν say in the
neighborhood of a position determined (in a Newtonian flat space description)
with respect to a central rotation axis by an orthogonal radius vector r. One of
the constituents is the “normal” (and therefore in a n equilibrium state) rigidly
rotating crust constituent characterized by a (uniform) angular velocity Ωc and
a corresponding velocity vector given as the cross product vc = Ωc ν × r. The
large scale averaged velocity of the superfluid constituent – which for our purpose
is to be thought of as constituted of neutrons – is characterized in terms of a
perhaps radially variable angular velocity Ωn by a similar formula vn = Ωn ν×r.
However in the latter case it is to be born in mind that that on a microscopic
scale the superfluid fluid is irrotational except on quantized vortex lines round
which the integral of the relevant superfluid particle momentum mvn is given
by the Planck constant, i.e. 2π� in Dirac’s notation, so that the corresponding
velocity circulation is κ = 2π�/m – while, in view of the opsonic pairing, the
relevant mass scale in the application with which we are concerned is twice that
of the neutron, i.e. m = 2mn

Since the averaged velocity circulation per unit area orthogonal to the ro-
tation direction ν will simply be 2Ωn, it follows that the corresponding surface
number density, σ say, of quantized vortices will be given by

σ =
Ωm

π�
. (29)

Although the superfluid motion is non dissipative, and so has no direct interac-
tion with the “normal” crust material, the vortex cores (which are defects where
the superfluidity breaks down) will in general be subject to a drag force F d say
per unit length, exerted by the background in the direction of relative motion.
Using the notation vv for the velocity of motion of the vortex lines orthogonally
to the rotation axis ν the dissipative drag force exerted by the background will
be given by a formula of the form

F d = ηr
(
vc − vv

)
, (30)

in which ηr is a positive resistive drag coefficient, whose quantitative evaluation is
a subject of much uncertainty – not just in the core, but even in the crust, where
it is very sensitive to temperature [31] and other quantities such as superfluid
pairing correlation lengths that are rather difficult to estimate [32].

This drag will not be the only force acting on the vortex line, which will
also be subject to the Magnus effect. According to the well known formula [6]
of Joukowski (or, in an alternative transliteration, Zhukovskii) this gives rise to
a lift force F l per unit length that is proportional to the product of the particle
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number density and the corresponding momentum circulation:

F l = 2π�n
(
vn − vv

)
× ν , (31)

where n is the relevant particle number density. In the neutron superfluid ap-
plication with which we are concerned the effect of the opsonic pairing must be
taken into account, which means that the relevant number density is only half
that of the neutrons themselves, i.e. n = nn/2.

On the microscopically very long timescales characterizing the relevant ap-
plications the vortex lines can be treated as effectively massless, which means
that the evolution of the system will be determined simply by the condition that
the total force on a vortex line must cancel out,

F d + F l = 0 . (32)

To solve this, it is convenient to decompose the velocity vv of the vortex lines
into a (small) radially outward directed part, with magnitude ṙ, and a (larger,
but for our purpose less important) remainder, directed parallel to the fluid flow
vectors, in the form

vv =
ṙ

r
r + Ωv ν × r , (33)

where Ωv is interpretable as the angular velocity of the vortex lattice. It is also
convenient to introduce a dimensionless resistivity coefficient defined by

cr =
ηr

2π�n
, (34)

which is what in the jargon of aero engineering would be called the drag to lift
ratio (what, in that context, one seeks to minimize by cunning aerofoil design).
The solution of (33) is thereby expressible as the condition that the vortex
line angular velocity is intermediate between those of the crust and superfluid
constituents, with value given by

Ωv =
Ωn + c 2

r Ωc

1 + c 2
r

, (35)

while the radially outward “creep” component of the velocity of the vortex lines
will be given by

ṙ =
rcr

1 + c 2
r

(
Ωn −Ωc

)
. (36)

This last equation is particularly important because it determines the rate of
change of the vortex line surface density σ: as the comoving radius of the vortex
distribution increases, the surface density will evidently undergo a corresponding
decrease given by the relation σ̇/σ = −2ṙ/r. Since by (29) this surface density
is proportional to the superfluid angular velocity, we deduce that the rate of
variation of the latter will be given by

Ω̇n

Ωn
= − 2cr ω

1 + c 2
r
, (37)
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where ω is the angular velocity difference as introduced in the relation (13),
from which, by comparison with (37), the corresponding value of the damping
timescale τ in which we are interested in, can be read out as

τ =
Ic

2IΩn

(
cr +

1
cr

)
. (38)

As well as showing that the timescale is subject to a lower limit (that might
have been guessed on dimensional grounds) given by τ ≥ Ic/IΩn and attained
for cr = 1, a noteworthy feature of this result [28,29,30], is the dual symmetry
between the roles of the drag to lift ratio cr and of its inverse, the lift to drag
ratio c−1

r . The decay timescale τ becomes infinitely large not just in the drag
free limit for which ηr and hence cr become arbitrarily small – so that by (35)
the vortices are dragged along with the superfluid – but also in the opposite
“pinned” limit of very large cr, for which the force on the vortices is strong
enough to lock them to the crust material.

The estimation of the actual values of the cr, in the various zones of interest,
has been the subject of much work, but the subject is difficult and many of
the results are still inconclusive or controversial. Following the recognition [28]
that magnetic coupling forces between the crust and the superconducting proton
neutron superfluid zone are more important than had been previously supposed,
and strong enough to lock this core region to the crust on timescales short
compared with those relevant to glitch observations, it was suggested [33] that
even the new coupling force values were underestimated, so much so that cr
would become large compared with unity, with the implication that τ could be
very long after all, just as had been supposed in the early years when cr had been
supposed to be small. Even in the qualitatively more familiar crust regime the
situation is still unclear, partly because of effects of temperature dependence:
work of Jones [32,34] suggests that pinning may be much less effective than had
been previously supposed so that instead of being high cr would be very low
there.

1.5 The long term crustal drift phenomenon

The question of the effectiveness of vortex pinning to the crust component leads
on to the related issue of what is actually responsible for the stress whose release,
when a critical value is exceeded, is supposed to provide the glitch mechanism
in the two constituent scenario described in the preceding section. All the early
versions of such a two constituent mechanism assumed that the relevant stresses
would be due to vortex pinning. Like their more recent variants, the various
early versions were classifiable in two distinct categories. In the first category
[24,35] it was supposed that the discontinuous breakdown would occur when
some maximum static pinning force value was exceeded: the sudden (rather than
“creeping”) nature of the breakdown was accounted for, in a recent version [36],
as being due to a thermal instability resulting from the temperature sensitivity
of cr, while another new suggestion [37] is that the relevant slippage occurs
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at the locus where the ions dissolve at the base of the crust. In the second
category [24,38,39] it was suggested that such a maximum pinning force value
might never be reached because the elastic solid structure would breakdown first
in a crustquake (of the kind required in the single constituent moment of inertia
changing mechanism that may account for cases such as that of the Crab).

In all these various versions, the necessary transfer of angular momentum
from the relevant independently rotating layers with moment of inertia In to the
crust component with moment of inertia Ic is mainly attributable to the torque
exerted by the pinning forces. However it has recently been pointed out [40] that
there is an alternative possibility (effectively a new variant within the second
category) whereby the necessary angular momentum transfer may be achieved
convectively – by a transfer of matter (removal from the crust of matter with
low angular momentum, and its replacement by matter with higher angular an-
gular momentum) which can occur even if torque forces are entirely absent, i.e.
in the small cr limit. In this new kind of scenario, the stress ultimately respon-
sible (when a critical level has been exceeded) for the discontinuous transfer is
attributable to a centrifugal buoyancy deficit in the relatively slowed down crust
component.

In the case of the earlier pinning driven mechanism, it was pointed out by
Ruderman [39] that if the glitches were due to breakdown of the solid structure
(rather than discontinuous vortex slippage) then the long term effect of many
glitches would be analogous to that of terrestrial continental drift. It would give
rise to a pattern of convective circulation [41] involving “transfusion” of matter
from the crust constituent to the underlying neutron superfluid constituent in
a “subduction” region near the equator, at colatitude θ = π/2, and the other
way round near the poles at colatitude θ = 0. The corresponding long term
average rate 〈θ̇〉 of angular drift of a crust plate at the surface, which for the
spin down of an isolated pulsar would be directed away from the pole towards
the equator (see Figure 2), was estimated by Ruderman on the assumption that
it would correspond to an outward velocity of the same order of magnitude as
the mean cylindrical expansion rate, 〈ṙ〉 ≈ −〈σ̇〉/2σ of the vortex distribution,
whose surface number density σ is given in terms of the angular velocity by the
proportionality relation (29). This reasoning [39] provided a formula of the form

〈θ̇〉 ≈ −〈Ω̇〉
2Ω

, (39)

which implies that the timescale for complete turnover of the crust material
is of the same order as the spin down lifetime of the pulsar, during which, as
Ruderman pointed out, the magnetic dipole would be able to be dragged most of
the way from the rotation axis to the equator. This would result in a net increase
(occurring discontinuously at the glitches) of the pulsar radiation rate and thus
of the magnitude of the spin down rate Ω̇. Another reason for an increase of the
spin down rate would be the decrease in oblateness according to (18), but this
would evidently be much less important.

Unlike the original single constituent mechanism [22,8,23,7] based on the
loss of moment of inertia due to decrease in oblateness, and unlike the ver-
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Fig. 2. Qualitative sketch indicating direction of force expected (c.f Ruderman 1991)
to act on (magnetically slowed down) crust due to vortex pinning mechanism, if it
is effective, when the (interpenetrating) neutron superfluid retains a higher rotation
rate. (Vertical shading indicates the alignment of the vortices in the region occupied
by neutron superfluid, which is not confined to the core but interpenetrates the greater
part of the solid crust as well.)

sions [35,36,37] of the two-constituent theory that attribute the glitches to dis-
continuous vortex slippage, but like the Ruderman version [38,39] (that applies
when the pinning is too strong to be broken) the newly proposed two-constituent
mechanism [40] (that applies when the pinning is too weak to be effective) will
also entail a substantial rate of long term drift of plates of crust material. How-
ever this centrifugal buoyancy deficit mechanism differs from Ruderman’s pin-
ning driven mechanism in a manner that may be experimentally observable, since
it is expected to produce plate drift in just the opposite direction, meaning that
of decreasing colatitude θ for an isolated spinning down pulsar (see Figure 3), en-
tailing transfusion of matter into the crust constituent near the equator, and out
of it nearer the poles where θ is small. In this mechanism (unlike Ruderman’s)
the angular momentum of a crust plate will not be significantly changed when its
colatitude undergoes a displacement δθ during a glitch, so its change of rotation
frequency can be estimated as being given roughly by δΩ/2Ω ≈ −δθ where δΩ
is the glitch amplitude that is actually observed, and that partially cancels the
preceding interglitch variation ΔΩ. The change observed in the long run is the
sum over the glitches of the combination ΔΩ+δΩ, which will be the same as the
sum of the hidden changes δn (since the interglitch variation Δn of the relevant
superfluid part is assumed to be negligible). Since δΩn = −

(
Ic/In

)
δΩ, by (23),

it can be seen to follow that the long run average of the angular drift rate will
be given by

〈θ̇〉 ≈ In
Ic

〈Ω̇〉
2Ω

, (40)

which has the opposite sign to what is given by the Ruderman formula (39), but
can be comparable in magnitude since In can be comparable with Ic. Indeed, in
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a case for which the moment of inertia In of the hidden part is large compared
with the crust contribution, the magnitude given by the new formula (40) would
be correspondingly larger than in the previous case, with the implication that
the crust material would be entirely recycled several times during the spin down
lifetime of the star, while this lifetime itself would presumably be considerably
prolonged because the magnetic dipole axis would be dragged towards the pole,
thereby decreasing the pulsar radiation rate.
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Fig. 3. Qualitative sketch (using same shading conventions as before) indicating di-
rection of force expected to act on (magnetically slowed down) crust, even if vortex
pinning is ineffective, due to centrifugal buoyancy mechanism when the (interpenetrat-
ing) neutron superfluid retains a higher rotation rate.

For the purpose of observational discrimination between cases involving
strong [38,39], moderate [35,36], or very weak [40], coupling the relevant di-
rectly measurable parameter is what is known [42] as the (long term) braking
index,

n =
〈Ω〉〈Ω̈〉
〈Ω̇〉2

, (41)

and more particularly the braking deficit

ε = 3− n (42)

between the value that is observed and the value, n = 3, that is predicted [43]
for a simple, rigid, non aligned magnetic dipole model, and also for more sophis-
ticated pulsar emission models including allowance [44] for outflow of charged
particles. If it is assumed that particle outflow and changes of moment of inertia
can be neglected, then according to the simple dipole model [43] the relative
spin down rate Ω̇/Ω is just proportional to (Ω sinα)2 where α is the dipole
misalignment angle, i.e. the colatitude of the magnetic pole, so for this case the
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difference (42) can be immediately evaluated as

ε � − 2Ω 〈α̇〉
tanα 〈Ω̇〉

. (43)

When it gets near the extreme polar or equatorial values, α � 0, or α � π/2 ,
the evolution of the misalignment angle will of course have to come to a halt,
〈α̇〉 � 0, but in the intermediate range, i.e. for tanα ≈ 1 one would expect the
misalignment angle to move with the crustal drift, 〈α̇〉 � 〈θ̇〉. Subject to this
assumption, the Ruderman formula (39) for the strong pinning model leads to
the positive estimate

ε ≈ cotα , (44)

while the formula (40) for the model with negligible pinning gives the negative
estimate

ε ≈ −In
Ic

cotα . (45)

The effects of variation of the moment of inertia [45] should not substantially
effect the validity of these estimates except for new born pulsars with extremely
rapid rotation, but electromagnetic effects of various kinds [46,47] (including the
obvious possibility of magnetic field decay) are more likely to give significant,
typically positive, contributions to ε. (In glitch free scenarios, Sedrakian and
Cordes [25] have pointed out that differential rotation may bring ε down to
negative values for periods of limited duration, but this sort of effect can be
expected to cancel out in a long term average over many glitches).

If these estimates are indeed applicable, then in the case of the Vela pulsar
the observed value [49], namely ε � 3/2, can be plausibly construed as evidence
flavoring the Ruderman model, with a moderate misalignment angle of the order
of 40 degrees. A less clear cut case example is that of the Crab, for which the
observed value [48], namely ε � 1/2, is also positive but considerably smaller,
which suggests that this may be another instance to which Ruderman model
applies, though with a relatively high misalignment angle. However in view of
the above mentioned likelihood [46,47] of other positive contributions to ε, this
evidence is too inconclusive to exclude the possibility that the Crab glitches may,
after all, be attributable a slippage mechanism [35,36,37] of the first category,
or even to the original simple oblateness mechanism subject to (21).

What transpires from all the work that has been rather rapidly surveyed
in the preceding sections is that the available theory of the internal structure
of neutron stars seems to provide all the elements needed to account for the
accumulated pulsar frequency data within the framework of scenarios in which
superfluidity and differential rotation commonly play an essential role. How-
ever we are still a long way short of reaching any consensus about the detailed
modelling of the many different kinds of behavior observed in particular cases
such as the Crab and Vela pulsars. Before any definitive understanding can be
reached it will be necessary to carry out much more work on the technicalities
of basic physical processes, particularly those involving electromagnetic effects,
which were barely mentioned in the preceding overview, but that are extremely
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important for the detailed estimation of important quantities such as the drag
to lift ratio, cr.

The remainder of this article will be concerned with just one of the many
technical problems that needs to be dealt with before a satisfactorily complete
understanding can be achieved. This is the problem of developing an appropri-
ately relativistic treatment of the superfluidity that has been seen to play such
an essential role in accounting for cases such as that of Vela, and even the less
extreme case of the Crab.

2 Essentials of relativistic superfluid mechanics

2.1 Motivation and background

In calculations of global quantities such as the mass and radius of a neutron star
with a given baryon number, it has been known since before the earliest pulsar
observations in 1968 that a fully relativistic treatment is indispensable for even
a minimally acceptable level of accuracy. It is fortunate that quantities such as
this [3] can be obtained within the framework of an exactly spherical perfect
fluid description for which a fully relativistic treatment is easily applicable and
has always been used. This contrasts with what has been done about secondary
effects such as precession [50,27,51], involving mechanisms such as elasticity (for
which a relativistic treatment has long been available [52,53] but is difficult to
apply) and superfluidity (for which the relevant macroscopic treatment [54,55,56]
is relatively new). Even in the relatively tractable context of stationary axisym-
metric problems, or in contexts involving the (intrinsically relativistic) effect of
gravitational radiation, superfluidity and superconductivity have nearly always
been dealt with using a non-relativistic Newtonian, even in relatively recent
work [57,58,59]

There are two essentially different reasons why it is worthwhile to try to do
better. One is of course that a fully relativistic treatment should in principle be
more accurate, and will no doubt become necessary for this purpose sooner or
later. However in the short run this is not always what is most important, since
the errors inherent in the use of a purely Newtonian treatment range typically
from a few per cent to a few tens of percent which is not very significant com-
pared with the order of unity (or worse) uncertainties about many of the physical
quantities involved. The other kind of reason (which some readers may find sur-
prising) is that for many purposes the use of a relativistic treatment is actually
easier. In many cases the advantage of a relativistic treatment is due to the fact
that the Lorentz group is in the technical sense semi-simple, whereas the Galilei
group unfortunately is not. However, whether or not it is intrinsically simpler,
the use of a relativistic treatment will usually be more convenient in practice
whenever one wishes to use the commonly appropriate strategy [21,60,61] of
working in terms of perturbations of the available spherically symmetric perfect
fluid neutron star models. This is just because (as remarked above) all the best
of these models (the only ones that are commonly taken seriously) are already



Superfluids in Neutron Stars 73

formulated exclusively in a (general) relativistic framework. The same considera-
tion applies to the perturbations of the relativistic axisymmetric rapidly rotating
star models that have recently [62,63,64,65,66] been a subject of rapid develop-
ment, particularly in relation to the question of bar mode instabilities that may
be significant as a source of gravitational radiation.

The treatment provided here will be limited to the case of scalar (spin 0)
models such as are appropriate for the experimentally familiar example of he-
lium - 4 (though not [67] helium - 3) and also for the mesoscopic description of
the neutron fluid that (as discussed above) is predicted to interpenetrate the ions
in the lower crust of a neutron star, and that is believed [68] to condense as a
superfluid in which the relevant bosons are scalar Cooper type pairs of neutrons.
For the mesoscopic (intervortex) treatment of the mixed proton neutron super-
fluid below the crust a scalar description has commonly been employed [18,69]
in a Newtonian treatment, and an analogous relativistic description [70,71] has
recently been made available. However for an exact description of such a mixed
proton neutron superfluid, in which it is predicted [68] that the neutrons pair
up as bosons of spin 1, it would be necessary to use a more elaborate treatment
that has yet to be developed).

What is actually needed for the analysis of large scale effects (such as were
considered in the preceding sections) is not just a mesoscopic treatment of the
superfluid on scales small compared with the spacing between interpenetrating
ionic nuclei and the vortices where the irrotationality condition breaks down, but
a macroscopic average over much larger scales. An appropriate macroscopic the-
ory of the kind that is needed has recently been developed [56] and is described
in the final subsections of this article. The treatment presented here differs from
the relativistic analogue [54,55] of the earlier non relativistic description [72] of
the averaged effect of vortices in neglecting the small anisotropy due to their
effective tension, but instead it includes allowance for what in the long run is
likely to be a more important effect, namely the “transfusion” of matter (for the
reasons discussed in the previous subsections) between the superfluid constituent
and the normal background, which is to be interpreted as representing not just
thermal excitations (as in ordinary liquid helium - 4) but the entire crust com-
ponent. A more elaborate treatment would include allowance for anisotropy of
the crust constituent which, as noted above, will be cold enough (except very
near the surface) to behave as an elastic solid: the way to do this has been in-
dicated elsewhere [73], but such a mixed fluid solid description has not yet been
developed in detail, and will not be dealt with in the introductory treatment
provided here.

As a preliminary to the construction of model [56] that is actually needed
for the macroscopic treatment of neutron star matter, this presentation starts
by recapitulating the long well known essentials of the relativistic version of the
single constituent kind of superfluid model that is appropriate for the description
of Helium 4 at zero temperature, and of of the more recently developed general-
ization [74,75,76] to a two constituent model (of the kind whose non-relativistic
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analogue was originally developed by Landau) in which the second constituent
represents a gas of phonon excitations.

2.2 Single constituent perfect fluid models

Before getting into the specific technicalities of superfluidity, it is worthwhile to
start by recapitulating the relevant properties of ordinary barotropic fluid mod-
els, which includes the category of single constituent (scalar) superfluid models
(representing the zero temperature limit of Landau type 2 constituent models) as
the special case in which the vorticity is zero. The vorticity, in this context, is to
be interpreted as the meaning the exterior derivative of the relevant momentum
covector which will be formally defined below, so the vanishing of the vorticity is
the condition for this momentum to be the gradient of a scalar potential, which
in the superfluid case is to be understood to be proportional to the phase angle
of an underlying opsonic quantum condensate. The qualification that this (zero
temperature limit) model is barotropic simply means that there is only one inde-
pendent state function such as the conserved (e.g. baryon) number density n or
the mass density ρ (which are proportional in Newtonian theory but non-linearly
related in relativistic theory) on which all the other state functions, such as the
pressure P are dependent. The equation of state giving P as a function of ρ will
also determine a corresponding speed cI say, of ordinary “first” sound, that will
be given by the familiar formula

c 2
I

= dP/dρ , (46)

and that must be subluminal, c 2
I
≤ c2 (where c is the speed of light) in order for

the usual causality requirement to be respected.
Before proceeding it is desirable to recall the essential elements of the rel-

ativistic kinematics and dynamics that will be required. This is particularly
necessary in view of the regrettable tradition in non-relativistic fluid theory –
and particularly in non relativistic superfluid theory – of obscuring the essen-
tial distinction between velocity (which formally belongs in a tangent bundle)
and momentum (which formally belongs in a cotangent bundle) despite the fact
that the distinction is generally respected in other branches of non-relativistic
condensed matter theory, such as solid state physics, where the possibility of
non-alignment between the 3-velocity va, and the effective 3-momentum pa of
an electron travelling in a metallic lattice is well known. Failure to distinguish
between contravariant entities (with “upstairs” indices) such as the velocity va

and covariant entities (with “downstairs” indices) such as the momentum pa is
something that one can get away with in a non-relativistic treatment only at
a price that includes restriction to strictly Cartesian (rather than for example
cylindrical or comoving) coordinates.

In a relativistic treatment, even using coordinates xμ ↔ {t, xa} of Minkowski
type, with a flat spacetime metric gμν whose components are of the fixed stan-
dard form diag{−c2, 1, 1, 1}, the necessity of distinguishing between raised and
lowered indices is inescapable. Thus for a trajectory parameterized by proper
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time τ , the corresponding unit tangent vector

uμ =
dxμ

dτ
(47)

is automatically, by construction, a contravariant vector: its space components,
ua = γva with γ = (1 − v2/c2)−1/2 will be unaffected by the index lowering
operation uμ �→ uμ = gμνu

ν , but its time component u0 = dt/dτ = γ will
differ in sign from the corresponding component u0 = −γc2 of the associated
covector uμ. On the other hand the 3-momentum pa and energy E determine a 4-
momentum covector μν with components πa = pa, μ0 = −E that are intrinsically
covariant. The covariant nature of the momentum can be seen from the way it
is introduced by the defining equation,

μν =
∂L

∂uν
, (48)

in terms of the relevant position and velocity dependent Lagrangian function L,
from which the corresponding equation of motion is obtained in the well known
form

dμν

dτ
=

∂L

∂xν
. (49)

In the case of a free particle trajectory, and more generally for fluid flow
trajectories in a model of the simple barotropic kind that is relevant in the zero
temperature limit, the Lagrangian function will have the familiar standard form

L = 1
2μgμνu

μuν − 1
2μc

2 , (50)

in which (unlike what is needed for more complicated chemically inhomogeneous
models [77,73]) it is the same scalar spacetime field μ that plays the role of mass
in the first term and that provides the potential energy contribution in the second
term. The momentum will thus be given by the simple proportionality relation

μν = μuν , (51)

so that one obtains the expressions E = γμc2, pa = μγva, in which the field μ is
interpretable as the relevant effective mass.

In the case of a free particle model, the effective mass μ will of course just
be a constant, μ = m. This means that if, as we have been supposing so far, the
metric gμν is that of flat Minkowski type, the resulting free particle trajectories
will be obtainable trivially as straight lines. However the covariant form of the
equations (47) to (51) means that they will still be valid for less trivial cases
for which, instead of being flat, the metric gμν is postulated to have a variable
form in order to represent the effect of a gravitational field, such as that of a
Kerr black hole (for which, as I showed in detail in a much earlier Les Houches
school [78], the resulting non trivial geodesic equations still turn out to be exactly
integrable).

In the case of the simple “barotropic” perfect fluid models with which we shall
be concerned here, the effective mass field μ will be generically non-uniform. In



76 B. Carter

these models the equation of state giving the pressure P as a function of the
mass density ρ can most conveniently be specified by first giving ρ in terms of
the corresponding conserved number density n by an expression that will be
decomposable in the form

ρ = mn +
ε

c2
, (52)

in which m is a fixed “rest mass” characterizing the kind of particle (e.g. a Cooper
type neutron pair) under consideration, while ε represents an extra compression
energy contribution. The pressure will then be obtainable using the well known
formula

P = (nμ− ρ)c2 , (53)

in which the effective dynamical mass is defined by

μ =
dρ

dn
= m +

1
c2

dε

dn
. (54)

It is this same quantity μ (sometimes known as the “specific enthalpy”) that is
to be taken as the effective mass function appearing in the specification (50) of
the relevant Lagrangian function (on what is formally identifiable as the tangent
bundle of the spacetime manifold).

When one is dealing not just with a single particle trajectory but a space-
filling fluid flow, it is possible and for many purposes desirable to convert the
Lagrangian dynamical equation (49) from particle evolution equation to equiv-
alent field evolution equations [77,73]. Since the momentum covector μν will be
obtained as a field over spacetime, it will have a well defined gradient tensor
∇ρμν that can be used to rewrite the right hand side of (49) in the form dμν/dτ
= uρ∇ρμν . Since the value of the Lagrangian will also be obtained as a scalar
spacetime field L, it will also have a well defined gradient which will evidently
be given by an expression of the form

∇νL =
∂L

∂xν
+

∂L

∂μρ
∇νμρ .

We can thereby rewrite the Lagrangian dynamical equation (49) as a field equa-
tion of the form

uρ∇ρμν + μρ∇νu
ρ = ∇νL . (55)

An alternative approach is of course to start from the corresponding Hamilto-
nian function, as obtained in terms of the position and momentum variables (so
that formally it should be considered as a function on the spacetime cotangent
bundle) via the Legendre transformation

H = μνu
ν − L . (56)

In this approach the velocity vector is recovered using the formula

dxμ

dτ
=

∂H

∂μν
, (57)



Superfluids in Neutron Stars 77

and the associated dynamical equation takes the form

dμν

dτ
= − ∂H

∂xν
. (58)

The consideration that we are concerned not just with a single trajectory but
with a spacefilling fluid means that, as in the case of the preceding Lagrangian
equations, so in a similar way this familiar Hamiltonian dynamical equation can
also be converted to a field equation which takes the form

2uρ∇[ρμν] = −∇νH , (59)

with the usual convention that square brackets are used to indicate index anti-
symmetrization. On contraction with uν the left hand side will evidently go out,
leaving the condition

uν∇νH = 0 , (60)

expressing the conservation of the value of the Hamiltonian along the flow lines.
The actual form of the Hamiltonian function that is obtained from the simple

barotropic kind of Lagrangian function (50) with which we are concerned will
evidently be given by

H =
1
2μ

gνρμνμρ +
μc2

2
, (61)

in which it is again the same scalar spacetime field μ that plays the role of mass
in the first term and that provides potential energy contribution in the second
term.

In order to ensure the proper time normalization for the parameter τ the
equations of motion (in whichever of the four equivalent forms (49), (55), (58),
(59) may be preferred) are to be solved subject to the constraint that the nu-
merical value of the Hamiltonian should vanish,

H = 0 , (62)

initially, and hence also by (60) at all other times. This is evidently equivalent
to imposing the standard normalization condition

uμuμ = −c2 , (63)

on the velocity four vector. In more general “non-barotropic” systems, such as
are needed for some purposes, the Hamiltonian may be constrained in a non
uniform manner [77,73] so that the term on the right of (59) will be non zero,
but in the simpler systems that suffice for our present purpose the restraint (62)
ensures that this final term will drop out, leaving a Hamiltonian equation that
takes the very elegant and convenient form

uνwνρ = 0 . (64)

in terms of the relativistic vorticity tensor that is defined as the antisymmetrized
(“exterior”) derivative of the momentum covector, i.e.

wνρ = 2∇[νμρ] . (65)
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It is an evident consequence (and, as discussed in greater detail in the above
cited Les Houches notes [55], would still be true even if (62) were not satisfied)
that if wμν is zero initially it will remain zero throughout the flow, which in this
case will be describable as “irrotational”.

In cases for which the vorticity is non-zero, the “barotropic” dynamical equa-
tion (64) is interpretable as requiring the flow vector uμ to be a zero eigenvalue
eigenvector of the vorticity tensor wμν , which is evidently possible only if its
determinant vanishes, a requirement that is expressible as the degeneracy con-
dition

wμ[νwρσ] = 0 . (66)

Since the possibility of it having matrix rank 4 is thus excluded, it follows that
unless it actually vanishes the vorticity tensor must have rank 2 (since an anti-
symmetric matrix can never have odd integer rank). This means that the flow
vector uμ is just a particular case within a whole 2-dimensional tangent subspace
of zero eigenvalue vorticity eigenvectors, which (by a well known theorem of dif-
ferential form theory) will mesh together to form well defined vorticity 2-surfaces
as a consequence of the Poincaré closure property,

∇[μwνρ] = 0 , (67)

that follows from the definition (65).
Although it has long been well known to specialists [82], the simple form

(64) of what is interpretable just as the relativistic version of the classical Euler
equation is still not as widely familiar as it ought to be, perhaps because its
Hamiltonian interpretation was not recognized until relatively recently [77,73].
It does not constitute by itself the complete set of dynamical equations of mo-
tion for the perfect fluid, but must be supplemented by a particle conservation
equation of the usual form for the particle number current

nν = nuν , (68)

which must of course satisfy the condition

∇νn
ν = 0 . (69)

A much more widely known, but for computational purposes (particularly in
curved spacetime) less useful form of the perfect fluid dynamical equations is to
express them in terms of the stress momentum energy density tensor, which is
given in terms of the mass density ρ and the pressure P by

Tμν = (ρ +
P

c2
)uμuν + Pgμν , (70)

and which must satisfy a so called conservation law of the standard form

∇νT
μν = 0 . (71)

Although it is conveniently succinct, a disadvantage of this traditional formula-
tion is that it is directly interpretable as a law of conservation of momentum and
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energy in the strict sense only in the case of a flat (Minkowski type) spacetime,
but not in a curved background such as that of a neutron star. The possibility
in the barotropic case (i.e. when P is a function only of ρ) of decomposing the
combined set of dynamical equations (70) as the combination of the convergence
condition (69) (obtained by contracting (71) with uμ) and the relativistic Euler
equation (64), which can be written out more explicitly as

nν∇[νμρ] = 0 , (72)

has the advantage that these are interpretable as genuine conservation laws – for
particle number flux and vorticity respectively – even in an arbitrarily curved
spacetime background.

3 Single constituent superfluid models

The simplest superfluid models, namely those pertaining to the zero temper-
ature limit, are just ordinary perfect fluid models subject to the restraint of
irrotationality, with a momentum covector given as the gradient

μν = ∇νS , (73)

of a scalar field S. This scalar field is to interpreted as being proportional to
the angle of the mesoscopic phase factor, eiφ say, of an underlying scalar op-
sonic condensate, in which the phase angle φ is given according to the usual
correspondence principle by

φ = S/� . (74)

In the most familiar application the bosons are Helium-4 atoms, while between
the ions of a neutron star crust below the neutron drip transition they will be
Cooper type neutron pairs. (However a less simple description is not sufficient
for the spin 1 neutron pairs below the base of the crust, nor in the even more
complicated, though experimentally accessible, case [67] of Helium-3, for which
a relativistic description is still not available).

In a multiconnected configuration of a classical irrotational fluid the Ja-
cobin action field S obtained from (73) might have an arbitrary periodicity, but
in a superfluid there will be a U(1) periodicity quantization requirement that
the periodicity of the phase angle φ should be a multiple of 2π, and thus that
the periodicity of the Jacobin action S should be a multiple of 2π�. The sim-
plest configuration for any such superfluid is a uniform stationary state in a flat
Minkowski background, for which the phase will have the standard plane wave
form

S/� = kax
a − ωt , (75)

from which one obtains the correspondence μν ↔ {−�ω, �ka}, which means that
the effective energy per particle will be given by E = γμc2 = �ω and that the
3-momentum will be given by pa = μγva = �ka.

It is to be remarked that for ordinary timelike superfluid particle trajectories
the corresponding phase speed ω/k of the wave characterized by (75) will always
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be superluminal – a fact of which people working with laboratory Helium-4
tend to be blissfully unaware, and can usually safely ignore, since what matters
for most practical purposes is not the phase speed but the group velocity of
perturbation wave packets.

In the irrotational case characterized by (73) the Euler equation (64) is sat-
isfied automatically, so the only dynamical equation that remains is (69). When
the phase scalar is subject to a small perturbation, δφ = ϕ say, it can be seen
that the corresponding perturbation of the conservation law (69) provides a wave
equation of the form ˜ϕ = 0 , (76)

in which ˜ is a modified Dalembertian type operator that is constructed from
an appropriately modified space-time metric tensor g̃μν in the same way that
the ordinary Dalembertian operator ≡ ∇μ∇μ is constructed from the ordi-
nary spacetime metric tensor gμν . The appropriately modified spacetime metric,
namely the relativistic version of what is known in the context of Newtonian
fluid [79,80] and superfluid [81] mechanics as the Unruh metric, can be read out
in terms of the light speed c and the (first) sound speed cI given by (46) as

g̃μν =
μ

n

(
cIγ

μν − c −1
I

uμuν
)
, (77)

where γμν is the spatially projected (positive indefinite) part of the ordinary
space time metric, as defined by

γμν = gμν + c−2uμuν . (78)

The quantum excitations of the linearized perturbation field ϕ governed by (76)
are what are known as phonons. For such excitations the phase speed and the
group velocity are the same, both being given with respect to the unperturbed
background by the ordinary (“first”) soundspeed, cI , as given by (46), which
will of course be subluminal. Phonons do nevertheless have a tachyonic aspect of
their own, because the fact that their phase speed is subluminal automatically
implies that they have a 4-momentum covector that is spacelike, in contrast
with that of a ordinary fluid or superfluid particle which is timelike. This means
that whereas the effective energy E of an ordinary fluid or superfluid particle is
always positive, the effective energy E of a phonon may be positive or negative,
depending on whether the frame of reference with respect to which it is measured
is moving subsonically or supersonically. The well known implication is that if
the superfluid is in contact with a supersonically moving boundary there will
inevitably be an instability giving rise to dissipative phonon creation.

Given a dynamical system, one of the first things any physicist is inclined
to ask is whether it is derivable from a Lagrangian type variation principle.
We have already seen in the previous sections that (64) by itself is obtainable
from Lagrangian equations of motion for the individual trajectories, which are
of course obtainable from a one dimensional action integral of the form

∫
Ldτ

with L as given by (50). The question to be addressed now is how to obtain the
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complete set of dynamical equations (71), including (64) as well as (69), from
an action integral over the 4-dimensional background manifold S(4) of the form

I =
∫
L dS(4) , dS(4) =

‖g‖1/2

c
d4x , (79)

for some suitable scalar Lagrangian functional L.
There are several available procedures for doing this for a generic perfect fluid

with rotation, involving radically different choices of the independent variables
to be varied: although they are all ultimately equivalent “on shell” the “off shell”
bundles over which the variations are taken differ not only in structure but even
in dimension. These methods notably include the worldline variation procedure
(the most economical from a dimensional point of view) developed by Taub [83],
and the Clebsch type variation procedures developed by Schutz [84], as well as
the more recently developed Kalb-Ramond type method [85,55] that has been
specifically designed for generalization [54] to allow for the anisotropy arising
from the averaged effect of vortex tension in the treatment of superfluidity at a
macroscopic level. None of these various methods is sufficiently simple to have
become widely popular.

The problem is much easier to deal with if, to start off with, one restricts
oneself to the purely irrotational case characterized by (73), which is all that
is needed for the description of zero temperature superfluidity at a mesoscopic
level. In this case a very simple and well known procedure is available. In this
procedure, the independent variable is taken to be just the Jacobin action S, or
equivalently in a superfluid context, the phase ϕ as given by (74), and the action
is simply taken to be the pressure P expressed as a function of the effective
mass μ, with the latter constructed as proportional to the amplitude of the
4-momentum, according to the prescription

μ2c2 = −μνμ
ν , (80)

with the 4-momentum itself given by the relation (73) that applies in the irro-
tational case, i.e.

μν = �∇νφ . (81)

Thus setting
L = P , (82)

and using the standard pressure variation formula

δP = c2nδμ , (83)

one sees that the required variation of the Lagrangian will be given by

δL = −nνδμν = −�nν∇ν(δφ) . (84)

Demanding that the action integral (79) be invariant with respect to infinitesimal
variations of ϕ = δφ then evidently leads to the required conservation law (69).
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It is to be noted that this variational principle can be reformulated in terms
of an independently variable auxiliary field amplitude Φ and an appropriately
constructed potential function V {Φ} as a function of which the action takes the
desirably fashionable form

L = −�
2

2
Φ2(∇νφ)∇νφ− V {Φ} , (85)

which is interpretable as the classical limit of a generalized Landau Ginzburg
type model. In this formulation, as discussed in greater detail elsewhere [85,55],
the auxiliary amplitude is to be identified as being given by the formula

Φ =
n√

ρ + P/c2
=
(n
μ

)1/2
, (86)

while the prescription for the corresponding potential energy density function is
that it should be given by

V =
ρc2 − P

2
. (87)

Having evaluated V as a function of Φ one can recover the effective mass μ,
number density n, mass density ρ and pressure P of the fluid using the formulae

μ2 =
1

c2Φ

dV

dΦ
, n = Φ2μ , (88)

and
ρ = 1

2 Φ2μ2 +
V

c2
, P = 1

2 Φ2μ2c2 − V , (89)

which are derivable from (53) and (54). It is to be remarked that the covariant
inverse of the generalized Unruh tensor (77) is expressible in this notation as

g̃−1
μν = Φ2(c −1

I
γμν − cIc

−2uμuν

)
. (90)

A particularly noteworthy example is the conformably invariant special
case [55] characterized by a potential function that is homogeneously quartan,
V ∝ Φ4, which is what is obtained for a radiation gas type equation of state of
the familiar form P = ρc2/3, and for which the (first) sound speed is given by
c 2
I

= c2/3.

4 Landau type 2-constituent superfluid models

As an intermediate step between the very simple single constituent superfluid
models described in the previous section and the more elaborate models needed
in the context of neutron stars, the purpose of this section is to describe the rel-
ativistic version of the category of non dissipative 2-constituent superfluid that
was originally developed by Landau for the description of ordinary superfluid
Helium-4 at non-zero temperature. As well as the relevant conserved particle



Superfluids in Neutron Stars 83

number current nμ (representing the flux of Helium atoms in that particular ap-
plication) such a model involves another independently conserved current vector,
sμ say, representing the flux of entropy. In the single constituent case character-
ized by the variation rule (84) we saw how the current vector nν was associated
with a dynamically conjugate covector μν that is interpretable as representing
the effective mean 4-momentum per particle. In a similar way in a 2-constituent
model the second current vector sν will be analogously associated with its own
dynamically conjugate 4-momentum covector Θν .

The earliest presentations of the generic category of non-dissipative 2-
constituent superfluid were on one hand a generalization [74] of the relativistic
Clebsch formulation [84] based on the variation of a generalized pressure func-
tion Ψ depending on the 4-momentum convectors μν and Θν according to the
partial differentiation rule

dΨ = −nν dμν − sν dΘν , (91)

and on the other hand a generalization [86,73] of the world line variational formu-
lation due to Taub [83] based on the variation of a master function Λ depending
on the currents nμ and sν according to the partial differentiation rule

dΛ = μν dn
ν + Θν ds

ν . (92)

Although they were originally developed independently these alternative for-
mulations were subsequently shown to be equivalent to each other and to an
intermediate crossbred version [75] based on a Lagrangian density

L = Ψ + sνΘν = Λ− nμμν , (93)

depending on the particle 4-momentum covector μν and the entropy current sν

according to the partial differentiation rule

dL = Θν ds
ν − nν dμν . (94)

All of these variational formulations are subject to the complication that
the allowable field variations are not free but must be suitably constrained to
avoid giving overdetermined field equations. Although it violates the symme-
try between the two kinds of conserved current nν and sν that are involved,
the crossbred formulation characterized by (94) is the one that allows the sim-
plest specification of the constraints required to get the appropriate dynamical
equations for the superfluid case. In this formulation [75] the constraint on the
particle 4-momentum covector is simply that it should have the same phase gra-
dient form (73) as in the zero temperature limit in which the entropy constituent
is absent, namely

μν = �∇νφ . (95)

The corresponding constraint on the current vector sν of the “normal” con-
stituent is the not quite so simple Taub type requirement that its variation should
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be determined by the displacement of the flow lines generated by an arbitrary
vector field ζν say, which means [73] that it must have the form

dsν = ζρ∇ρs
ν − sν∇ρζ

ν + sν∇ρζ
ν , (96)

whose derivation is obtainable by a procedure that will be explained more ex-
plicitly in the next Section. Demanding invariance of the volume integral of L
with respect to infinitesimal local variations of the phase variable φ then gives
the usual particle conservation law in the same form (69) as for the single con-
stituent limit, while demanding invariance for an arbitrary local displacement
field ζ gives not only the analogous entropy conservation law

∇νs
ν = 0 , (97)

but also the dynamical equation,

sν∇[νΘρ] = 0 , (98)

that governs the evolution of the thermal 4-momentum covector in a manner
analogous to that whereby the relativistic Euler equation (72) governs the evo-
lution of the momentum covector in an ordinary perfect fluid. These dynamical
equations entail (but unlike the single constituent case are not entirely contained
in) an energy momentum pseudo-conservation law of the usual form (71) for a
stress-momentum-energy density tensor that can be written in the form

T ν
ρ = nνμρ + sνΘρ + Ψgν

ρ , (99)

which will in fact (although it is not obvious in this particular expression) be
automatically symmetric, T [νρ] = 0.

The category of models characterized by the preceding specifications for vari-
ous conceivable forms of the equation of state specifying L as a scalar function of
μν and sν is very large. The use of what is interpretable [87] as a special subcate-
gory therein, on the basis of a particular kind of separation ansatz, was proposed
in early work of Israel [88] and Dixon [89] and has been advocated more recently
by Olsen [90]. Unfortunately however, the simplification provided by the Israel
Dixon ansatz (effectively the relativistic generalization of the obsolete Tisza-
London theory that was superseded by that of Landau) is incompatible with the
kind of equation of state that is needed for even a minimally realistic treatment
of a real superfluid.

A satisfactory treatment of what goes on at temperatures high enough for
non-linear “roton” type excitations to be important is not yet available, but
in the low temperature “cool” regime, in which only linear “phonon” type ex-
citations are important, it is not difficult to provide a straightforward analytic
derivation of the kind of equation of state that is appropriate. Following the lines
developed in a non - relativistic context by Landau himself [91] the relativistic
version of the appropriate “cool” equation of state has recently been derived [76]
by considering perturbations of the single constituent model – with equation of
state specified as a pressure function, P{μ} – that describes the relevant zero
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temperature limit. The result is obtained in an analytically explicit form that
(despite the fact that it is not of the separable Israel Dixon kind) can be given
a very simple expression in terms of what we referred to as the “sonic” metric,
which is specifiable by the conformed relation

Gρσ = Φ2c −1
I

g̃ρσ (100)

in terms the Unruh phonon metric (77) that is associated with the relevant zero
temperature limit state as specified by the relevant momentum covector μν ,
which by (80) determines the relevant value of the scalar μ and hence (via the
zero temperature equation of state, using the formalism of Section 2.2) also of the
relevant phonon speed cI and field amplitude Φ. While the Unruh metric is more
convenient for many purposes, the advantage of the conformed modification we
have used, namely

Gρσ = gρσ +
(
c−2 − c −2

I

)
uρuσ , (101)

is that its spatially projected part agrees with that of the ordinary space metric,
from which it differs only in the measurement of time.

The result that is obtained [76] is given by a Lagrangian of the form

L = P − 3ψ (102)

in which the deviation from the zero pressure limit value P{μ} is given as a
function not just of the particle 4-momentum covector μν but also of the entropy
flux sν (postulated to be sufficiently weak to be constituted only of phonons) by
the formula

ψ =
�̃

3
c −1/3
I

|G−1
ρσs

ρsσ|2/3 , (103)

where �̃ is identifiable to a very good approximation with the usual Dirac-Planck
constant �, its exact value being given by

�̃ =
9
4π

(5π
6

)1/3
� 0.99 � . (104)

This is equivalent to taking the generalized pressure function to be

Ψ = P + ψ , (105)

with
ψ =

cI

4

( 3
4�

)3(
GρσΘρΘσ

)2
, (106)

in which the effective thermal 4-momentum per unit of entropy is given (accord-
ing to the partial differentiation formula (94)) by

Θρ =
4�̃

3
|cIG−1

μνs
μsν |−1/3G−1

ρσs
σ , (107)

with

G−1
ρσ = gρσ +

(
1− c 2

I

c2

)
|μνμν |−1μρμσ . (108)
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An concrete illustration, allowing the explicit evaluation of the relevant quan-
tities, is provided by the polytropic case, as characterized by a (single con-
stituent) equation of state giving the mass density ρ as a function of the number
density n in terms of a fixed (“rest”) mass per particle m, a scale constant κ
and a fixed dimensionless index γ in the form

ρ = mn + κnγ ⇔ μ = m + κγnγ−1 , (109)

which corresponds to taking the pressure to be given by

P = κc2(γ − 1)nγ = κc2(γ − 1)
(μ−m

κγ

)γ/(γ−1)
, (110)

while the corresponding sound speed will be given (independently of κ) by

c 2
I

= (γ − 1)
(
1− m

μ

)
c2 . (111)

5 Non-conservative model with transfusion
and vortex drag

Although the Landau type of model described in the previous section has been
found to be very effective for the description of liquid Helium-4 under labo-
ratory conditions, it is not of much use for direct application in neutron star
matter because the thermal effects it allows for will in general be less important
than other complications whose treatment will require the use of more elaborate
models whose relativistic versions are still at a relatively early stage of develop-
ment and will not be presented here. The most important of these complications,
whose treatment in a relativistic framework has been the subject of preliminary
work that is discussed elsewhere, are due to the effect of the protons that will
be present, either in ionic nuclei that are responsible for the elastic solid behav-
ior [73] of the crust, or as a dissolved superfluid [70,71] at deeper levels. Another
complication that is relevant for the macroscopic treatment of a neutron star is
the necessity of averaging over an Abrikosov type lattice of quantized vortices
(that must be roughly aligned with the rotation axis of the star) whose effective
tension entails deviations [54,55] from perfect fluid isotropy.

Like the thermal effect discussed in the preceding section, these various com-
plications can all be provisionally set aside as perturbations to be incorporated
at a later stage in a systematic approach whose first stage requires the use only of
a relatively crude description in which, except for the superfluid neutrons with
baryon number current vector n ν

n all the other constituents, meaning mainly
protons and electrons, move together with the entropy as a single “normal” con-
stituent with baryon number current n ν

c . Whereas the anisotropy arising from
vortex tension [54,55] is relatively unimportant, a major role in the long term
evolution of the star is likely to be played by the static pinning or dynamical
drag forces exerted on the vortices by the composite “normal” background con-
stituent. Another effect that is of importance in the long run is that of “trans-
fusion” whereby – due to the subduction resulting from the drift mechanism
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whose effect is roughly described by (39) or (40) – the superfluid neutron contri-
bution n ν

n to the baryon current may undergoes transformation (via weak beta
decay type processes) to the “normal” (essentially photonic) constituent, and
vice versa, so that only the total baryon current

nB = n ν
n + n ν

c (112)

remains locally conserved throughout:

∇νn
ν
B = 0 . (113)

The kind of (non-conservative) 2-constituent model needed for this purpose
is obtainable as a generalization of the kind of (conservative) 2-constituent su-
perfluid model discussed in the preceding section, starting from the formulation
in terms of a master function Λ in which the currents (not momenta) are taken
as the independent (but not entirely free) variables.

In a transfusive model of the type set up here, the “normal” constituent is
not entirely dependent on (though it does include) entropy, so that it is present
even at zero temperature: the primary role of this non - superfluid constituent
is to represent the fraction of the carbonic material of the neutron star that is
not included in the neutron superfluid, as well as the degenerate electron gas
that will be present to neutralize the charge density resulting from the fact that
some of these baryons will have the form of protons rather than neutrons. In the
solid “crust” layers of a neutron star the protons will be concentrated together
with a certain fraction of the neutrons in discrete nuclear type ions, which at the
relatively moderate temperatures that are expected to apply will form a solid
lattice. In the upper crust the “normal” constituent consisting of the ionic lattice
and the degenerate electrons will include everything, but in the lower crust (at
densities above about 1011 gm/cm3) the crust will be interpenetrated by an
independently moving neutron superfluid. What we refer to as “transfusion”
occurs when compression takes place so that the ionic constituent undergoes
a fusion process whereby neutrons are released in the form of newly created
superfluid matter, or conversely, when relaxation of the pressure allows excess
neutrons to be reabsorbed into the ions.

A more elaborate treatment would specifically allow for the expectation that
the protons would form an independently conducting superfluid of their own at
very high densities, whereas they will combine with some of the neutrons at inter-
mediate densities, and with all of the neutrons at low densities, to form discrete
ions which will tend to crystalize to form a possibly anisotropic lattice. What
matters for our present purpose is that regardless of its detailed constitution, all
this “normal” matter will in effect be strongly self coupled [19] by short range
electromagnetic interactions so that its movement will be describable to a very
good approximation as that of a single fluid with a well defined 4-velocity, uC

μ

say, the only independent motion being that of the (electromagnetically neutral)
neutron superfluid with velocity uN

μ say. The latter will specify the direction of
the part of the baryon current,

nn
μ = nnuN

μ , (114)
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carried by the neutron superfluid, while the “normal” matter velocity specifies
the direction of the remaining collectively comoving part,

nc
μ = ncuC

μ , (115)

of the baryon current.
At densities below the “neutron drip” transition at about 1011 gm/cm3, the

“normal” collectively comoving constituent nc
μ will of course be identifiable

with the total, nB
μ. The reason why the remaining free neutron part nn

μ –
which will always be present at higher densities – is presumed to be in a state
of superfluidity is that the relevant condensation temperature, below which the
neutrons form opsonic condensate of Cooper type pairs is estimated [92] to be
at least of the order of 109 K, while it is expected that a newly formed neutron
star will drop substantially below this temperature within a few months [93].
At such comparatively low temperatures the corresponding entropy current sμ

say will not play a very important dynamical role, but for the sake of exact
internal consistency it will be allowed for in the model set up here, in which it
will be taken for granted that it forms part of the “normal” collectively comoving
constituent so that it will have the form

sμ = suμ
C . (116)

Under conditions of sufficiently slow convection, the transfer needs not in-
volve significant dissipation, so the process should be describable by a Lagrangian
scalar, Λ say, that will depend just on the currents introduced above, of which
the independent components are given just by the vectors nμ

c and nμ
n and the

scalar s. As a first approximation (whose accuracy in the various relevant density
regimes is a subject that needs much further investigation) one might suppose
that the Lagrangian separates in the form Λ = −ρcc2 − ρnc2 in which ρc is a
mass density depending only on s and nc, while ρn is an another energy mass
depending only on nn, but we shall not invoke such a postulate here, i.e. we allow
for the likelihood that the properties of “normal” constituent will be affected by
the presence of the superfluid constituent and vice versa, which means that there
will be an entrainment effect [94,18,19,95], whereby for example the velocity of
the superfluid neutron current will no longer be parallel to the corresponding
momentum. (As an alternative to the more suitable term “entrainment” this
mechanism is sometimes referred to in the literatures as “drag”, which is mis-
leading because entrainment is a purely conservative, entirely non-dissipative
effect, whereas the usual kinds of drag in physics, and in particular the kind of
drag to be discussed below, are essentially dissipative processes.)

If we adopted the (gas type) description embodied in the separation ansatz
we would have two separate variation laws which in a fixed background would
take the form c2δρc = Θδs+c2μcδnc and c2δρn = c2μnδnn, in which Θ would be
interpretable as the temperature, μc would be interpretable as the effective mass
per baryon in the “normal” part, and μn would be effective mass per neutron
in the superfluid part (which would be equal to its analogue in the “normal”
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part, i.e. μn = μc, in the particular case of a state of static thermodynamic
equilibrium.)

In the less specialized (liquid type) description to be used here, there will just
be a single “conglomerated” variation law, whose most general form, including
allowance for a conceivable variation of the background metric, will be expressible
(correcting one of the copying errors in the originally published version [56]) as

δΛ = −Θδs+μc
νδn

μ
c +μn

νδn
ν
n+ 1

2

(
c−2Θsuμ

Cu
ν
C+nc

μμcν +nn
μμnν

)
δgμν , (117)

where Θ is to be interpreted as the temperature and where μn
μ and μc

μ are to
be interpreted as the 4-momentum per baryon of the neutron superfluid and the
“normal” constituent respectively.

To obtain suitable fluid type dynamical equations from a Lagrangian ex-
pressed as above just in terms of the relevant currents, the variation of the latter
must be appropriately constrained in the manner[73] that was originally intro-
duced for the case of a simple perfect fluid by Taub [83]. The standard Taub
procedure can be characterized as the requirement that the variation of the rel-
evant current three form, which for the “normal” constituents in the present
application will be given in terms of the antisymmetric space-time measure ten-
sor εμνρσ by

Nμνρ = εμνρσn
σ
c , (118)

should be given by Lie transportation with respect to an associated, freely cho-
sen, displacement vector field ζμ say. This ansatz gives the well known result

δNμνρ = ζλ∇λNμνρ + 3Nλ[μν∇ρ]ζ
λ . (119)

Although a variation δgμν of the metric has no effect on the fundamental current
three form, Nμνρ, it will contribute to the variation of the corresponding vector,

nμ
c =

1
3!
εμνρσNνρσ , (120)

for which one obtains

δnμ
c = ζν∇νn

μ
c − nν

c∇ν ζ
μ + nμ

c
(
∇νζ

ν − 1
2 g

νρδgνρ

)
. (121)

(Application of an analogous procedure to the entropy current provides the vari-
ation rule (96) that was used in Section 3). In terms of the orthogonally projected
metric,

γc
μν = gμν + c−2uμ

Cu
ν
C , (122)

the corresponding variation of the unit flow vector will be given by

δuC
μ = γc

μ
ρ

(
ζν∇νu

ρ
C − uC

ν∇νζ
ρ
)

+ 1
2 c

−2uμ
Cu

ν
Cu

ρ
Cδgνρ , (123)

and the corresponding variation in the current amplitude nc will be

δnc = ∇ν

(
ncζ

ν
)

+ nc
(
c−2uC

μuC
ν∇μζν − 1

2 γc
μνδgμν

)
. (124)
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Since the entropy flux is to be considered as comoving with the “normal” con-
stituent, it is subject to a variation given by the same displacement vector ζ,
which thus gives

δs = ∇ν

(
sζν
)

+ s
(
c−2uC

μuC
ν∇μζν − 1

2 γ
μν
c δgμν

)
. (125)

On the other hand for the superfluid constituent there will be an independent
displacement vector field ξμ say, in terms of which the analogously constructed
variation will be

δnμ
n = ξν∇νn

μ
n − nν

n∇νξ
μ + nμ

n
(
∇νξ

ν − 1
2 g

νρδgνρ

)
. (126)

The effect of this variation process on the Lagrangian density ‖g‖1/2Λ itself
can be seen to be expressible in the standard form

‖g‖−1/2δ
(
‖g‖1/2Λ

)
= ζνf c

ν + ξνfn
ν + 1

2T
μνδgμν +∇μRμ , (127)

in which f c
ν will be interpretable as the force density acting on the “normal”

constituent, fn
ν will be interpretable as the force density acting on the superfluid

constituent, and Tμν will be interpretable as the stress momentum energy density
of the two constituent as a whole.

By considering the trivial case in which there is no actual physical alteration
of the system, but in which the apparent changes are merely due to the displace-
ment of the reference system generated by a vector field ξν = ζν , in which case
the apparent variation of the metric will be given by δgνν = 2∇[μζν], it can be
seen from (127) that the separate forces must automatically satisfy an identity
of the form

f c
ν + fn

ν = f ex
ν , (128)

where f ex
ν is the conglomerated external force density that is defined by

f ex
ν = ∇μT

μ
ν . (129)

The residual current Rμ in the divergence will be of no importance for our
present purpose (by Green’s theorem it just gives a surface contribution that
will vanish by the variational boundary conditions) but it is to be noted for the
record that it will have the form

Rμ = 2ζ [μuC
ν](c−2ΘsuCν + ncμ

c
ν

)
+ 2ξ [μnn

ν]μn
ν . (130)

The conglomerated stress momentum energy density tensor can easily be read
out as

Tμ
ν = Ψgμ

ν + c−2ΘsuC
μuCν + nc

μμc
ν + nn

μμn
ν , (131)

where
Ψ = Λ + sΘ − nc

νμc
ν − nn

νμn
ν . (132)

(Although this expression is not manifestly symmetric, the asymmetric contri-
butions will automatically cancel due to the identity μc[μnc

ν] = −μn[μnn
ν]).
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What matters most for our present purpose is the form of the respective force
densities: the force law (i.e. the relevant relativistic generalization of Newton’s
“second” law of motion) for the “normal” constituent is found to take the form

f c
ν = 2sμ∇[μ

(
c−2ΘuCν]

)
+ 2nc

μ∇[μμ
c
ν] + c−2ΘuCν∇μs

μ + μc
ν∇μn

μ
c , (133)

while the force law for the superfluid component is found to take the simpler
form

fn
ν = f ch

ν + fme
ν , (134)

in which the first term is a “chemical” contribution, representing the effect of
any neutron superfluid particle creation or destruction, which is given by

f ch
ν = μn

ν∇μn
μ
n . (135)

The last term in (134) is a “mechanical” contribution, allowing for drag or pin-
ning forces exerted on the vortices by the crust and balanced by the Magnus
effect, according to the formula

fme
ν = nn

μwn
μν , (136)

using the notation
wn

μν = 2∇[μμ
n
ν] (137)

for the vorticity 2-form of the superfluid neutrons. It is to be noted that this is not
the mesoscopic (intervortex) superfluid vorticity, which simply vanishes, but the
average vorticity on a macroscopic scale that is large compared with the spacing
(typically a very small fraction of a cm.) between the superfluid vortices. For a
very accurate treatment it would be necessary to take account of the macroscopic
anisotropy resulting from the effective tension of these vortices, as has already
been done [54,55] for the case a single constituent, but for the discussion of
global evolution on timescales long compared with the stellar oscillation periods
(a small fraction of a second) such an effect seems unlikely to be important.

Although the complete expression (133) is not so simple, it is to be observed
that the time component in the “normal” rest frame (representing the rate of
working on the “normal” constituent) as obtained by contraction with the rele-
vant unit vector uC

ν has the comparatively simple form

uC
νf c

ν = uC
νμc

ν∇μnc
μ −Θ∇μs

μ . (138)

If we were to impose the variation principle to the effect that the system
should be invariant with respect to arbitrary worldline displacements (as speci-
fied by the independent fields ζ ν and ξ ν) it would follow that each of the forces
f c

μ and fn
ν would have to vanish. However it is evident from the identity (128)

that we cannot adopt such a restrictive postulate in a model designed to treat
the effect of pulsar slowdown due to a torque attributable to coupling to an
external electromagnetic field that is removing angular momentum by radiation
to infinity. As well as the intrinsically non-conservative magnetic torque contri-
bution to f ex

ν it is also important [40] to include a contribution to allow for the
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effect of the elastic solidity in the crust, which is not incorporated into the simple
fluid type model included here (and which would require the use of a much more
elaborate model [73] for its detailed evaluation).

Although our ultimate purpose is to allow for a non vanishing external torque
force, whatever force law we assume must be such that if the external force f ex

ν

were somehow switched off so as to leave an effectively isolated system, the
second law of thermodynamics (no decrease of entropy in an isolated system)
would be respected, i.e. we must have f ex

ν = 0 ⇒ ∇νd
ν ≥ 0. It can be seen that

this is equivalent to the requirement of positivity of the right hand side of the
identity

Θ∇μs
μ + uC

νf ex
ν = uC

ν(μn
ν − μc

ν)∇μnn
μ + uC

νfme
ν , (139)

that is obtained from (138), taking account of the total baryon conservation
law (112). Since they involve very different physical processes, one comes to the
conclusion that each of the two terms on the right of (139) must satisfy its own
separate positivity condition.

The positivity requirement for the first of these terms is presumably to be
attributed to a crust particle creation law of the form

∇μn
μ
n = Ξuν

C(μn
ν − μc

ν) (140)

for some positive coefficient Ξ. Such a law is an obviously natural generalization
of the kind of creation rate formula that is familiar in chemical physics. In the
present context what is involved is conversion of protons to neutrons by weak
interactions, and the situation is complicated by the consideration that as far as
the large scale mechanics of the neutron star is concerned, the effective rate may
depend not just on microscopic processes, but also, when subduction is involved,
on the rather messy process whereby the crust is broken up before it ultimately
dissolves.

To complete the specification of the system, all that remains is to find the
appropriate ansatz for the mechanical force fme

ν . This problem is more del-
icate than that of the (effectively scalar) chemical case, since as well as the
“second law” requirement u ν

Cf
me

ν ≥ 0, the answer must respect the nature of
the macroscopic vorticity 2-form wn

μν which although non vanishing (unlike the
mesoscopic vorticity between vortices) cannot be arbitrary (as in an ordinary
viscous fluid): to be consistent with the underlying superfluid nature of the neu-
tron constituent, it must satisfy an algebraic degeneracy condition of the form
(66) in order to be compatible with the existence of a well defined congruence of
orthogonal 2-surfaces generated by (non vanishing) tangent vectors, vν say, such
that wn

μνv
ν = 0. It can be seen from the form of the defining relation (136) that

the obvious way to obtain this degeneracy property is to take the force law to
have the form fme

ν = wn
νσv

σ for some suitably chosen vector vν which, to satisfy
the “second law” requirement must satisfy u ν

Cw
n
νσv

σ ≥ 0. The required ansatz
can thus be taken to be given by vμ = αwn

μνu
ν
C for some positive coefficient

α. This result is conveniently expressible in terms of the rank-2 tensor ⊥μ
ν of
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orthogonal projection with respect to the vortex 2-surface, which is given by

⊥μ
ν= 2(wnρσwn

ρσ)−1wnλμwn
λν . (141)

We end up with an expression taking the form

fme
ν = ηr ⊥νσ uσ

C , (142)

for a positive resistive drag coefficient ηr (given in terms of the previous coeffi-
cient α by 2ηr = αwnρσwn

ρσ).
The generic class of dissipative models characterized by finite values of Ξ

and ηr has four different kinds of non dissipative limit. In the low reactivity
limit Ξ → 0 we have the non-transfusive limit characterized by the separate
superfluid particle conservation law

∇νn
ν
n = 0 , (143)

whereas in the opposite high reactivity limit Ξ → ∞ we have the chemical
equilibrium limit characterized by

u ν
C
(
μc

ν − μn
ν

)
= 0 . (144)

which is what would be expected in cases for which the (continental drift like)
crust circulation responsible for the transfusion is characterized by timescales
that are very long compared with those [98] of the relevant weak (direct or inverse
beta decay) interactions. For each of these conceivably relevant possibilities, we
have the drag free limit ηr → 0 characterized by the condition of vanishing
Magnus force,

nμ
nw

n
μν = 0 , (145)

or at the opposite extreme the perfect vortex pinning limit, ηr →∞ characterized
by the condition that the vortex worldsheets should be at rest with respect to
the “normal” (crust) background,

uμ
Cw

n
μν = 0 . (146)

The actual evaluation of the drag coefficient ηr, and the question of whether one
or other of these simple extreme limits is realistic depends on delicate technical
issues [96,97] whose definitive resolution is not entirely clear. A scenario of the
type envisaged by Ruderman [39], as represented by Figure 1, and described
by (39) (which seems to be appropriate for Vela) is what would be obtained in
the case characterized by (146), whereas the more recently proposed alternative
scenario [40] represented by Figure 2, and described by (40), is what would be
obtained in the case characterized by (145).

It is of course to be expected that such extreme scenarios will turn out in
practise to be oversimplifications of a more complicated reality, whose description
is likely to require modelling with not just two [61] but many independently
rotating components, to allow for the variation of the chemical and mechanical
coefficients Ξ and ηr over a wide range of finite values as a function of depth in
the star.
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Abstract. This review starts with a discussion of the hierarchy of scales, relevant to
the description of superfluids in neutron stars, which motivates a subsequent elemen-
tary exposition of the Newtonian superfluid hydrodynamics. Starting from the Euler
equations for a superfluid and a normal fluid we apply the tensor virial method to
obtain the virial equations of the first, second, and third order and to compute their
Eulerian perturbations. Special emphasis is put on the computation of perturbations of
the new terms due to mutual gravitational attraction and mutual friction between the
two fluids. The oscillation modes of superfluid Maclaurin spheroids are derived from
the first and second order perturbed virial equations. We discuss two generic classes
of oscillation modes which correspond to the co-moving and relative oscillations of two
fluids. These modes decouple if the normal fluid is inviscid. We also discuss the mixing
of these modes (when the normal fluid is viscous) and its effect on the dynamical and
secular instabilities of the co-moving modes and their damping.

1 Introduction

Radio and x-ray observations of neutron stars provide strong evidence for the
superfluidity of neutron star interiors. Perhaps, the most striking manifestations
of their superfluidity are the long (on time-scales from several hours to hundreds
of days) relaxations that follow the glitches in the spin and spin-down rates of
some pulsars. Although the majority of pulsars are very precise clocks, timing
observations reveal persistent random fluctuations in times of arrival of radio
signals. Some pulsars show long-term periodicities in their spin-characteristics
and periodic changes of their pulse shape. However, the relation between the
superfluidity of neutron star interiors and these latter anomalies of pulsar timing
is not firmly established yet.

Further evidence for the superfluidity of neutron star interiors came in the
1980s with the advent of the orbiting x-ray satellites. The measurements of
the thermal radiation from a dozen or so hot neutron stars provided indirect
information on the temperature of superfluid phases in neutron stars. Theoretical
thermal histories of superfluid neutron stars are consistent with the x-ray data
(within the limits of our knowledge of the input physics). Non-superfluid stars,
as a rule, cool too fast to below the threshold of detection.
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Apart from the radiation in the electro-magnetic spectrum, neutron stars
are expected to be primary sources of gravitational wave radiation, which are
expected to be detectable by future laser interferometer detectors.

It is hoped that one can probe neutron star interiors and their superfluidity
using gravity waves, as their eigen-frequencies and damping may depend on the
dissipation in the superfluid, at temperatures below the superfluid phase tran-
sition. This review concentrates on the oscillations of superfluid self-gravitating
ellipsoids within the tensor virial method. The method was originally introduced
by Chandrasekhar and Fermi in the context of magneto-hydrodynamics [1]. It
was extensively developed in the 1960s by Chandrasekhar for the study of the
ellipsoidal figures of equilibrium and their oscillations. A comprehensive account
of this work is contained in Chandrasekhar’s monograph Ellipsoidal Figures of
Equilibrium (hereafter EFE)[2].

The ellipsoidal approximation provides an idealized picture of oscillations of
neutron stars. One can think of several arguments in favor of adopting such an
approach: first, the combination of the Newtonian gravity and two-fluid hydro-
dynamics of superfluid defines

an exactly solvable model if we assume that the fluids are incompressible and
inviscid; second, past experience with single-fluid self-gravitating ellipsoids shows
that most of the qualitative features found for these ellipsoids have their analogs
in more “realistic” systems; third, the method is transparent and in many cases
analytical results can be obtained which shed light on the underlying physics.
The tensor virial method is not the only tool for investigating the properties of
ellipsoidal figures. Alternative formulations exist in the literature and we refer
to [3,4,5] for further details; for a pedagogical introduction see the textbook [6].
Note, also, that various formulations of the theory of ellipsoids, to a large extent,
are equivalent.

Superfluid oscillations were studied using various methods and approxima-
tions in the past decade or so. Epstein pointed out that the superfluidity of
neutron star interiors has potentially important effects on the propagation of
seismically excited acoustic waves. It allows for additional types of waves to
propagate by virtue of doubling of degrees of freedom in a superfluid; superfluid
phases create acoustic discontinuities in which wave velocities or polarizations
change abruptly on the bounding interfaces [7]. The effects of superfluidity on
global hydrodynamic oscillations were investigated by Lindblom and Mendell
[8] in a model where the superfluid and the normal fluid are coupled via gravi-
tational attraction and the entrainment effect1. Their solutions reveal that the
lowest frequency pulsations are almost indistinguishable from those derived from
the ordinary-fluid hydrodynamics; however, their analytical solutions also reveal
the existence of a spectrum of modes which are absent in a single fluid star.
Nonradial oscillations of non-rotating superfluid neutron stars were computed
by Lee, whose numerical solutions for the radial and non-radial pulsations of
1 The latter effect arises in the layers where neutrons and proton condensates coexist,

hence the flow of one condensate is accompanied by the motion of the other. See
B. Carter’s article in this volume for further details.
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the two-fluid stars identified distinct superfluid modes [9]. The effects of shear
viscosity of the electron fluid and mutual friction on the r-mode oscillations were
studied by Lindblom and Mendell [10] by constructing an energy functional and
computing the time-scales associated with the dissipative terms. The oscillation
modes of superfluid analogs of the classical Maclaurin, Jacobi and Roche ellip-
soids were derived recently by Sedrakian and Wasserman [11] within the tensor
virial method. The oscillation modes of superfluid ellipsoids separate into two
classes corresponding to relative and co-moving (or center-of-mass, hereafter re-
ferred as CM) motions of two fluids. The CM oscillations are identical to the
oscillations of single-fluid ellipsoids and are undamped if one ignores the viscos-
ity of the normal fluid. The mutual friction contributes only to the damping of
the relative oscillation modes. One important feature of the latter modes is that
they do not emit gravitational radiation as there is no mass transport associated
with them. Our discussion of the tensor virial method is based on [11].

This review is organized as follows. In the remainder of the Introduction we
motivate the averaged superfluid hydrodynamics and identify the relevant scales
in the problem. In Sect. 2 we give a tutorial introduction to the Newtonian
superfluid hydrodynamics, which is mainly built on the work of Bekarevich and
Khalatnikov [12]. Sect. 3 introduces the tensor virial method and illustrates its
applications to the superfluid ellipsoidal figures by computing the perturbations
of the new terms in virial equations due to their two-fluid nature. We discuss
in Sect. 4 the oscillations of superfluid Maclaurin spheroids including the effects
of mutual friction and viscosity of the normal fluid. Sect. 5 contains a brief
summary. We refer the reader to the accompanying article by B. Carter for a
review of relativistic models and an overview of the state of the art of the theory
of superfluidity in neutron stars.

1.1 Characteristic length scales

The physics of neutron star superfluidity unfolds on a hierarchy of three distinct
length-scales. The separation of these scales is useful, as often the physics of a
neighboring scale enters a theory at a given scale in the form of phenomeno-
logical constants, which can potentially be fixed by comparison with measured
observables.

At the microscopic level the physical scale of the order of fermi (fm= 10−13

cm) is set by the nuclear forces. The long-range attractive interaction between
nucleons leads to an instability of the normal state of the nuclear matter against
Cooper pairing, in analogy to the microscopic Bardeen-Cooper-Schrieffer the-
ory of superconductivity of metals. The nuclear forces control the size of the
“elementary bosons” of the theory - the Cooper pairs, which appear as weakly
bound states of two fermions near the Fermi surface. The size of a Cooper pair,
the coherence length ξ, is of the order of 10 fm. It sets, obviously, the lower scale
on which the hydrodynamic description of superfluids breaks down. On length
scales larger than ξ, the condensate of Cooper-pairs can be described by a single
wave function ψ(x), i.e., the condensate forms a macroscopically coherent state.
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At the local hydrodynamic level the relevant physical scale is set by the size
of vortices - macroscopic quantum objects, whose fundamental property is the
quantization of the circulation around a path encircling their core. The circu-
lation is quantized in units of 2π� since the condensate wave-function must be
single valued function at each point of the condensate. On writing ψ = ψ0e

iχ,
the gauge invariant superfluid velocities can be expressed through the gradient
of the phase of superfluid order parameter χ and the vector potential, A

vτ =
�

2mτ
∇χτ −

eτ

mτ c
A, (1)

where eτ ≡ (e, 0) is the electric charge of protons and neutrons respectively, mτ

is their bare mass; τ ∈ {n, p}, where n and p stand for neutrons and protons
respectively. Applying the curl operator to (1) and implementing quantization
of the circulation (the phase of the superfluid order parameter changes by 2π
around a closed path) we find

curlvτ =
π�

mτ
ντ

∑
j

δ(2)(x− xτj)−
eτ

mτ c
B ≡ ωτ , (2)

where π�/mτ is the circulation quantum, ντ ≡ ωτ/ωτ is a unit vector along the
vortex lines, xτj defines the position of a vortex line in the plane orthogonal
to the vector ντ , δ(2) is a two–dimensional delta function in this plane and
B = curl A is the magnetic field induction. The j–summation is over the sites
of vortex lines. Note that (2) treats the vortex cores as singularities in the plane
orthogonal to ντ , which is justified on scales larger than the coherence length of a
condensate. The crossover from the local hydrodynamic scale to the microscopic
scale can be studied within the Ginzburg-Landau theory as we briefly discuss
below.

For a single vortex the integral of (2) completely determines the superfluid
pattern; as this equation is linear, for larger number of vortices the superfluid
pattern is a superposition of the flows induced by each vortex. The resulting net
flow, obviously, depends on the arrangement of the vortices. It turns out that
the integral of (2) on the local hydrodynamic scale is radically different from the
one on the scales involving larger number of vortices in a rotating superfluid.

To appreciate the difference in superfluid patterns on different scales let us
look for vortex solutions in a neutral condensate in cylindrical geometry. The
condensate wave function has the form ψ(x) = f(r)eiθ in the polar-cylindrical
coordinates (r, θ, z); the neutron superfluid velocity upon integrating (2) becomes

vn =
�

2mnr
θ̂. (3)

The divergence of the superfluid velocity when r → 0 is avoided by introducing
cut-off on scales of the order of the coherence length. The cut-off scale, for Fermi-
liquids, can be understood by noting that an increase of vn when r → 0 causes
an increase of the kinetic energy of Cooper pairs which eventually becomes larger
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than the binding energy of a pair. The broken pairs will perform a rigid-body
rotation with an angular velocity which scales as Cr and is regular in the r → 0
limit (here C is a constant). This crossover can be seen from the well-known
solutions of the Ginzburg-Landau equation for the amplitude f(r):

d2f

dζ2 +
1
ζ

df

dζ
− 1

ζ2 f + f − f3 = 0, (4)

where ζ = r/ξn and ξn is the size of the vortex core. The asymptotic solutions
of (4) are

f(ζ) =
{

Cζ ζ 	 1,
1− (2ζ2)−1 ζ →∞,

(5)

while numerical solutions for intermediate values of ζ show that the conden-
sate wave function is at half of its value in a homogeneous condensate when
ζ = 1. Note the long-range nature of the superfluid vortex velocity, and the re-
sulting slow fall-off of the density perturbation in the condensate. This behavior
is specific to neutral condensates; for charged condensates the super-current is
screened exponentially on length scales of the order of the penetration depth λ.
The solution of (2) for a charged condensate is

vp =
�

2mpλ
K1

( r
λ

)
θ̂, (6)

where K1 is the Bessel function of imaginary argument; as for r � λ, K1(r/λ) �
exp(−r/λ), therefore the superfluid circulation decays exponentially; in the op-
posite limit r 	 λ, K1(r/λ) � λ/r and (6) assumes a form identical to (3).

At the global hydrodynamic level the relevant scales are of the order of the
size of the system, which in neutron stars is of the order of kilometers. On
these scales the hydrodynamic and thermodynamic variables are course-grained
quantities, i.e. they are averages over a large number of vortices. The solution (3)
does not minimize the energy E−L ·Ω of a rotating superfluid, where E and L
represent the kinetic energy and the angular momentum respectively. The energy
acquires its minimum for a superfluid flow which to a high precision mimics a
rigid body rotation i.e., vn = Ωr, where r is the distance from the rotation
axis; (small deviation occur only at the bounding surface of the superfluid). On
the global hydrodynamic scales a transition to a continuum vortex distribution
can be carried out on the right-hand side of (2) by defining vortex densities
nτ =

∑
j δ

(2)(x − xτj). Since for rigid-body rotations the curl of vn is simply
2Ω, the number density of vortices in the neutron superfluid is related to the
macroscopic angular velocity of the neutron condensate by the familiar Feynman
formula

nn =
2mnΩ

π�
. (7)

For typical pulsar periods, 0.05 < P < 0.5 s, nn � 6.3.× 103 P−1 ∼ 104-105 per
cm2. The minute difference between the superfluid and normal angular velocities
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in a neutron star decelerating under external braking torques is neglected here.
For a charged superfluid (2) can be transformed to a contour integral over a
path where vp = 0, as the super-current is screened beyond the magnetic field
penetration depth λ. Again, going over to the continuum vortex limit we find

np =
B

Φ0
� 5× 1018 cm−2. (8)

Note that the number of proton vortices per neutron vortex is np/nn ∼ 1013 −
1014 independent of their arrangement. The energy of a bundle of neutron or
proton vortices is minimized by a triangular lattice with a unit cell area

n−1
τ = (

√
3/2) d2

τ .

The length of a “basis vector” of such a lattice in a neutron condensate (the
neutron inter-vortex distance) is

dn =
(

π�√
3mn Ω

)1/2

. (9)

For the inter-vortex distance in the proton condensate we find

dp =
(

2Φ0√
3B

)1/2

, (10)

where B is the mean magnetic field induction. Using the estimates given in
(7) and (8) we find that the neutron and proton inter-vortex distances are
dn ∼ 10−2 − 10−3 cm and dp ∼ 10−9 cm respectively. For typical values of
the microscopic parameters the penetration depth is of the order of 100 fm,
therefore the conditions ξn 	 dn and ξp 	 min(λ, dp) are satisfied and the
use of the hydrodynamics on the local scale is justified. It is also clear that the
global hydrodynamics can be applied on scales that are much larger than dn (a
fraction of millimeter).

The remainder of this review concentrates on the physics of the global hy-
drodynamic scale and on neutral superfluids only, as the dominant fraction of
the moment of inertia of a neutron star resides in the neutron fluid and it plays
the main role in the hydrodynamic oscillations of the star. Charged superfluids
will be absorbed in the normal fluid of the star formally, as they are coupled
to the electron liquid via electro-magnetic forces on short time-scales. Note that
their role is crucial in controlling the mutual friction on the local hydrodynamic
scale; however the physics of this scale will enter the theory on the global scale
via phenomenological constants, which we will treat as free parameters of the
theory.

2 Two-fluid Newtonian superfluid hydrodynamics

The superfluid phases in neutron stars coexist with normal fluids whose interac-
tion with superfluid vortices leads to the effect of the mutual friction between
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a superfluid and normal fluid. A phenomenological description of this effect is
based on the two-fluid dissipative hydrodynamics. A particularly simple and
transparent formulation which, with some care, can be taken over to describe
superfluids in neutron stars, was developed by Bekarevich and Khalatnikov for
liquid He4 [12]. It is interesting that the general form of mutual friction forces
can be obtained by utilizing only the conservation laws and some reasonable as-
sumptions on the form of the dissipation. Although the superfluids in a neutron
star can be assumed to be at zero temperature, i.e., the number of quasi-particle
excitations is small, they coexist with a normal liquid of electrons in the core
and a nuclear lattice in the crusts. Hence, entropy is irreversibly produced due
to various dissipative mechanisms in the normal fluid even though the superfluid
matter is effectively at zero temperature. Formally, the electron liquid and the
nuclear lattice in the crusts take over the role of quasi-particle excitations in the
superfluid hydrodynamics of liquid He4.

The conservation of the combined mass of the two fluids is given by the
continuity equation

∂ρ

∂t
+ ∇ · J = 0, (11)

where the net mass ρ = ρS + ρN is the sum of the masses of superfluid and
normal fluid, J = ρNvN + ρSvS is the mass current (hereafter the indexes S
and N refer to superfluid and normal fluid, respectively.) The total momentum
conservation is

∂Ji

∂t
+

∂Pik

∂xk
= 0, (12)

where Pik is the stress energy tensor. The time evolution of the entropy, S, of
normal fluid can be written as

∂S

∂t
+ ∇ · Svn =

R

T
, (13)

where R is the dissipative function, T is the temperature; finally, the conservation
of the energy, E, reads

∂E

∂t
+ ∇ ·Q = 0, (14)

where Q is the energy current. Equations above should be supplemented by the
Euler equations for the superfluid and the normal fluid

ρS

[
∂vS

∂t
+ (vS ·∇) · vS

]
= −ρS

ρ
∇p− ρS∇φ + F, (15)

ρN

[
∂vN

∂t
+ (vN ·∇) · vN

]
= −ρN

ρ
∇p− ρN∇φ + ηNΔvN − F, (16)

where F is the mutual friction force, and ηN is the viscosity of the normal fluid,
φ is the Newtonian gravitational potential. To determine the unknowns in the
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hydrodynamic equations, let us write the total energy of the fluid in the frame
in which the normal fluid is at rest as

E =
1
2
ρv2

S + (J− ρvS) · vS + E , (17)

where the internal energy E is given by the second law of thermodynamics as

dE = TdS + μdρ + (vN − vS) · d(J− ρvS) + Λdω. (18)

The energy due to the vorticity is represented by the term which is proportional
to ω = ∇ × vS . Differentiating (17) with respect to time and eliminating the
time derivatives using the conservation laws above we recover the conservation
of the energy

∂E

∂t
+ ∇ ·Q = R +

(
P ′

ik − Λωδik + Λ
ωiωk

ω

) ∂vNi

∂xk

+ (J− ρvN + ∇× Λν) · {F + [(vS − vN )× ω]} = 0, (19)

where P ′
ik is the part of the stress tensor associated with the vorticity; the

explicit form of the energy current is not indicated since it will not be used in
the following. Since the dissipative function R must be positive, the remaining
terms on the right-hand side of (19) must be quadratic forms for small deviations
from equilibrium. This implies that the most general form of the mutual friction
force is

F = − [ω × (∇× Λν)]− β [ν × [ω × (vN − vS −∇× Λν) ] ]
− β′ [ω × (vN − vS −∇× Λν)] + β′′ν · [ω · (vN − vS −∇× Λν)] , (20)

where β, β′ and β′′ are phenomenological coefficients. On substituting the mutual
friction force in the Euler equation for the superfluid, (15), we see that the
vorticity propagates with a velocity vL, that is

∂ω

∂t
= ∇× (vL × ω) , (21)

which is defined, assuming β′′ 	 β , β′, as

vL = vS + ∇× Λν + β′(vN − vS −∇× Λν)
+ β [ω × (vN − vS −∇× Λν) ] . (22)

The latter equation can be put in a form reflecting the balance of forces acting
on a vortex

ρS [(vS + ∇× Λν − vL)× ω]− η (vL − vN ) + η′ [(vL − vN )× ν] = 0, (23)

with the new phenomenological coefficients η and η′ defined as

β =
ηρSω

η2 + (ρSω − η′)2
, β′ = 1− ρSω (ρSω − η′)

η2 + (ρSω − η′)2
. (24)
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The first term in (23) is a non-dissipative lifting force due to a superflow past
the vortex (the Magnus force). The remaining terms reflect the friction between
the vortex and the normal fluid. The coefficients η and η′, therefore, measure
the friction parallel and orthogonal to the vortex motion in the plane orthogonal
to the average direction of the vorticity. A nonzero β′′ implies friction along the
average direction of the vorticity, which is possible if vortices are oscillating, or
are subject to other deformations in the plane orthogonal to the rotation. One
may assume, at least under stationary conditions, that β′′ 	 β, β′.

In the both limits of either strong coupling (η � ρSω) or weak coupling
(η 	 ρSω) between a vortex and the normal fluid, one finds that β → 0 as a
function of η, with the maximum βmax = 0.5 at η = ρSω. In the strong coupling
limit β′(η) → 1, while in the opposite weak coupling limit β′(η) → 0 (generally
we assume that the quasi-particle–vortex scattering kinematics implies η′ 	 η
and that for the relevant densities η′ 	 ρSω). Note that β′(η) approaches its
asymptotic strong-coupling values quadratically, while β(η) does so linearly; the
asymptotic behavior for large η’s, therefore, is dominated by β(η).

3 Virial equations and their perturbations

Virial equations of various order are constructed by taking moments of the hy-
drodynamic equations. Since the computation of their perturbations is central
to the theory of superfluid ellipsoids we review this somewhat technical issue
in this section. The reader who is interested only in the physics of superfluid
oscillations can proceed to the next section where we discuss the oscillations of
Maclaurin spheroids.

The equations of motion (15) and (16), written in a frame rotating with
angular velocity ω relative to some inertial coordinate reference system, can be
combined in a single equation

ρα

(
∂

∂t
+ uα,j

∂

∂xj

)
uα,i = −∂pα

∂xi
− ρα

∂φ

∂xi
+

1
2
ρα

∂|ω×x|2
∂xi

+ 2ραεilmuα,lΩm + Fαβ,i, (25)

where the subscript α ∈ {S,N} identifies the fluid component, and Latin sub-
scripts denote coordinate directions; ρα, pα, and uα are the density, pressure,
and velocity of fluid α. The two fluids are coupled to one another by mutual
gravitational attraction and the mutual friction force Fαβ [equation (20)]. The
gravitational potential φ is derived from

∇2φ = ∇2(φS + φN ) = 4πG[ρS(x) + ρN (x)]; (26)

the individual fluid potentials φα obey ∇2φα = 4πGρα. For a normal-superfluid
mixture the mutual friction force, written in components, is

FSN,i = −ρSωSβij(uS,j − uN,j), (27)
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where the mutual friction tensor is

βij = βδij + β′εijmνm + (β′′ − β)νiνj , (28)

with β, β′ and β′′ being the mutual friction coefficients, and ωS = νωS ≡
∇×uS .

The Euler equation (25) can be extended to include external gravitational
sources, for example the tidal potential of an external point source of gravity
acting on an ellipsoid (Roche ellipsoids). We will not discuss here the stability
and oscillations of superfluid counterparts of the classical Roche binaries; their
relative oscillation modes are derived in [11].

The general strategy for finding the equilibrium shapes of ellipsoidal figures
and modes of their oscillations within the tensor virial method consist of (i)
constructing moments of the hydrodynamic equations describing fluid motions
in the rotating frame; (ii) computing Eulerian perturbations of the resulting
virial equations; (iii) expressing these perturbations in terms of the virials of
various order; these are defined as the moments of the Lagrangian displacement
ξα of fluid α:

Vα,i ≡
∫

Vα

d3x ρ ξα,i, (first order) (29)

Vα,i;j ≡
∫

Vα

d3x ρ ξα,ixj , (second order) (30)

Vα,i;jk ≡
∫

Vα

d3x ρ ξα,ixjxk, (third order) (31)
. . .

The advantage of using the homogeneous ellipsoidal approximation is that the
perturbations of the gravitational energy tensor of an ellipsoid can be expressed
in terms of the index symbols defined as (cf. EFE Chap. 3)

Aijk... = a1a2a3

∫ ∞

0

du

Δ(a2
i + u)(a2

j + u)(a2
k + u) . . .

, (32)

Bijk... = a1a2a3

∫ ∞

0

udu

Δ(a2
i + u)(a2

j + u)(a2
k + u) . . .

, (33)

where Δ2 = (a2
1 + u)(a2

2 + u)(a2
3 + u) and a1, a2, and a3 are the semi-axis of

the ellipsoid. This strategy is described in detail in EFE. Below, we concentrate
on its extension to superfluids with an emphasis on the new effects of mutual
friction and mutual gravitational attraction of the superfluid and normal fluid.

3.1 First order virial equations

On taking the zeroth moment of (25) which amounts to integrating over Vα we
obtain the “first order ‘virial’ equation”2

2 The word “virial” is in quotes because the equations are intrinsically dissipative.
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d

dt

(∫
Vα

d3xραuα,i

)
= 2εilmΩm

∫
Vα

d3xραuα,l + (Ω2δij −ΩiΩj)
∫

Vα

d3xραxj

−(1− δαβ)
∫

Vα

d3xρα
∂φβ

∂xi
+
∫

Vα

d3xFαβ,i. (34)

Note that we impose the boundary condition pα = 0 for each fluid on the bound-
ing surface of Vα. The fluids are not restricted to occupy the same volume. Apart
from simple doubling of the number of the inertial forces, which do not couple
the two fluids, there are two forces that do couple them: gravity and friction. The
net mutual gravitational force between the fluids vanishes only if they (i) occupy
the same volume and (ii) have densities that are proportional to one another (i.e.
ρS ∝ ρN ). The mutual friction force is nonzero as long as the fluids move relative
to one another. Although the mutual friction force is nonzero only in the overlap
volume of the two fluids - a restriction which is necessary to derive conservation
of total momentum for the combined fluids - it would be effective throughout
the entire volume of fluids because the force is mediated by a macroscopically
extended vortex lattice.

For isolated single-fluid ellipsoids the first harmonic oscillations are trivial,
since they correspond to motions of the center-of-mass of an ellipsoid and can
be eliminated by a transformation to the reference frame whose origin is located
at the center-of-mass of the ellipsoid. For two-fluid ellipsoids the fluid motions
include the counter-phase (relative) oscillations of two fluids, which can not be
eliminated by any transformation. These are the only new type of oscillations
for the superfluid Maclaurin and Jacobi ellipsoids (the solitary ellipsoids with
vanishing internal motions). In the case of ellipsoids in an external gravitational
field (e.g. the Roche ellipsoids), the CM motions are not trivial any more, since
the external (inhomogeneous by assumption) source of gravitational field breaks
the translational symmetry of the problem. Hence, apart from the relative oscil-
lations of two fluids, the CM oscillations become non-trivial.

Consider first the variation of the first order virial equation under the influ-
ence of perturbations. The variations of the inertial terms proceeds in full analogy
to EFE. Here we concentrate on variations of the new terms corresponding to
the mutual gravitational attraction and mutual friction. The variation of the
first force is

− δ

∫
Vα

d3xρα
∂φβ

∂xi
= −

∫
Vα

d3xρα(x)ξα,l(x)
∂

∂xl

∫
Vβ

d3x′ρβ(x′)(xi − x′
i)

|x− x′|3

+
∫

Vβ

d3xρβ(x)ξβ,l(x)
∂

∂xl

∫
Vα

d3x′ρα(x′)(xi − x′
i)

|x− x′|3 (35)

which is manifestly antisymmetric on α ↔ β. Assuming Vα = Vβ = V and
ρα = fαρ(x) in the background equilibrium, we can simplify this to

− δ

∫
Vα

d3xρα
∂φβ

∂xi
= fαfβ

∫
V

d3xρ(x)[ξβ,l(x)− ξα,l(x)]

× ∂

∂xl

∫
V

d2x′ρ(x′)(xi − x′
i)

|x− x′|3 . (36)
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Although we simplified the final answer by assuming that the fluids occupy
identical volumes and have proportional densities in the background state, we
could not have derived the correct perturbation of the first order virial theorem
if we had not allowed the volumes to differ.

For uniform ellipsoids, we can simplify the mutual gravitational term further.
First, we note that the second integral is simply the derivative of the gravitational
potential which at any interior point of a homogeneous ellipsoid is

φ(x) = −πGρ

(
I −

3∑
k=1

Akx
2
k

)
, (37)

where I is a constant. Thus, the mutual gravitational contribution to the equa-
tion of motion for the perturbed center-of-mass is

2πGρ2Aifαfβ

∫
V

d3x(ξβ,i − ξα,i). (38)

If in the background state, the two fluids move together or are stationary, the
variation of the mutual friction force becomes

δ

∫
V

d3xFαβ,i = −Sαβ
d

dt

[
fS

∫
V

d3xρ(x)ωSβij(ξα,j − ξβ,j)
]
, (39)

where Sαβ = 1− δαβ . Collecting terms we find the first order virial equation

fα
d2Vα,i

dt2
= 2εilmfαΩm

d

dt
Vα,l + (Ω2δij −ΩiΩj)fαVα,j

− 2πGρAifαfβ (Vα,i − Vβ,i)− SαβfSωSβij (Vα,j − Vβ,j) . (40)

The CM and relative motions can be decoupled by defining

Vi ≡ fSVS,i + fNVN,i, Ui ≡ VS,i − VN,i. (41)

The CM motions of two fluids are trivial (as they can be eliminated by a linear
transformation of the reference frame) and, therefore, Vi = 0. The virial equation
describing the relative motions of the two fluids is

d2

dt2
Ui = 2εilmΩm

d

dt
Ul

+ (Ω2δij −ΩiΩj)Uj − 2AiUi − 2Ω
(

1 +
fS

fN

)
βij

d

dt
Uj . (42)

From the latter equation it is straightforward to compute the first harmonic
relative oscillation modes of irrotational ellipsoids, which is done in the next
section for Maclaurin spheroids.
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3.2 Second order virial equations

Taking the first moment of (25) results in the second order ‘virial’ equation

d

dt

(∫
Vα

d3xραxjuα,i

)
= 2εilmΩm

(∫
Vα

d3xραxjuα,l

)
+ Ω2Iα,ij −ΩiΩkIα,kj

+ 2Tα,ij + δijΠα +Mα,ij + (1− δαβ)Mαβ,ij + Fαβ,ij ,

(43)

where

Iα,ij ≡
∫

Vα

d3x ραxixj (44)

Πα ≡
∫

Vα

d3x pα (45)

Tα,ij ≡ 1
2

∫
Vα

d3xραuα,iuα,j (46)

Mα,ij ≡ −G

2

∫
Vα

d3x d3x′ρα(x)ρα(x′)(xi − x′
i)(xj − x′

j)
|x− x′|3 (47)

Mαβ,ij ≡ −G
∫

Vα

d3x

∫
Vβ

d3x′ρα(x)ρβ(x′)xj(xi − x′
i)

|x− x′|3 (48)

Fαβ,ij ≡
∫

Vα

d3xxjFαβ,i. (49)

When there is only one fluid present, this equation reduces to the one found
in Chap. 2 of EFE. Again we consider only variations of the new terms in the
second order virial equation due to the mutual gravitational attraction (Mαβ,ij)
and mutual friction (Fαβ,ij). The first variation is

δMαβ,ij = −Gfαfβ

{∫
V

d3xρ(x)ξα,l(x)
∂

∂xl

∫
V

d3x′ρ(x′)(xi − x′
i)(xj − x′

j)
|x− x′|3

+
∫

V

d3xρ(x)[ξα,l(x)− ξβ,l(x)]
∂

∂xl

∫
d3x′ρ(x′)(xi − x′

i)x
′
j

|x− x′|3
}
, (50)

where we have specialized to backgrounds with proportional densities and iden-
tical bounding volumes. The first term in the brackets can be combined with
δMα,ij . The resulting equation can be written more compactly in terms of the
functions

Bij ≡ G

∫
V

d3x′ρ(x)(xi − x′
i)(xj − x′

j)
|x− x′|3 , (51)

∂Dj

∂xi
≡ −G

∫
V

d3x′ρ(x′)x′
j(xi − x′

i)
|x− x′|3 , (52)

which are related by

∂Dj

∂xi
= Bij − xj

∂φ

∂xi
; (53)
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we find

δMα,ij + (1− δαβ)δMαβ,ij = −fα

∫
V

d3xρξα,l
∂Bij

∂xl

+ fαfβ

∫
V

d3xρ(ξα,l − ξβ,l)
∂2Dj

∂xl∂xi
. (54)

For the uniform ellipsoids [cf. EFE, Chap. 3, (125) and (126)],

Dj

πGρ
= a2

jxj

(
Aj −

3∑
k=1

Ajkx
2
k

)
, (55)

Bij

πGρ
= 2Bijxixj + a2

i δij

(
Ai −

3∑
i=1

Aikx
2
k

)
, (56)

1
πGρ

∂2Dj

∂xl∂xi
= 2Bij(δilxj + δjlxi)− 2a2

i δijAilxl. (57)

Using these results, and defining symmetric in their indexes second order virials
as

Vα,ij = Vα,i;j + Vα,j;i, (58)

we finally obtain

δMα,ij + (1− δαβ)δMαβ,ij

πGρ
= −fα

(
2BijVα,ij − a2

i δij

3∑
l=1

AilVα,ll

)

−a2
jfαfβ

[
2Aij(Vα,ij − Vβ,ij) + δij

3∑
l=1

Ail(Vα,ll − Vβ,ll)
]
. (59)

For the perturbations of mutual friction force we find

δ

∫
Vα

d3xxjFαβ,i = −SαβfS

∫
V

d3xρωSxjβik

(
dξS,k

dt
− dξN,k

dt

)
. (60)

For perturbations of uniform ellipsoids, ωS and ρ are independent of position in
the unperturbed background, and we may also assume that βij is constant; for
backgrounds in which there are no fluid motions

δ

∫
Vα

d3xxjFαβ,i = −SαβfSρωSβik

(
dVα,k;j

dt
− dVβ,k;j

dt

)
. (61)

Thus the second order virial equation for a fluid α, in a frame rotating with an
angular velocity Ω, is

fα
d2Vα,i;j

dt2
= 2εilmΩmfα

dVα,l;j

dt
+ Ω2fαVα,ij −ΩiΩkfαVα,kj + δijδΠα
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− fαπGρ

(
2BijVα,ij − a2

i δij

3∑
l=1

AilVα,ll

)

− a2
jfαfβπGρ

[
2Aij(Vα,ij − Vβ,ij) + δij

3∑
l=1

Ail(Vα,ll − Vβ,ll)
]

− SαβfαωSβik
d

dt

(
Vα,k;j − Vβ,k;j

)
. (62)

We can replace these equations with a different set by defining

Vi;j ≡ fSVS,i;j + fNVN,i;j Ui;j ≡ VS,i;j − VN,i;j . (63)

In terms of these new quantities we find

d2Vi;j

dt2
= 2εilmΩm

dVl;j

dt
+ Ω2Vij −ΩiΩkVkj + δijδΠ

− πGρ

(
2BijVij − a2

i δij

3∑
l=1

AilVll

)
, (64)

d2Ui;j

dt2
= 2εilmΩm

dUl;j

dt
+ Ω2Uij −ΩiΩUkj + δij

(
δΠS

fS
− δΠN

fN

)
− 2πGρAiUij − 2Ωβik

d

dt
Uk;j . (65)

The first equation is identical to the second order virial equation for a normal
inviscid fluid. The second equation is specific to superfluids and contains all the
new modes of relative oscillations between the normal fluid and superfluid. It is
clear that the separation of the oscillation modes in the CM and relative modes is
the result of the symmetry of the two-fluid hydrodynamic equations with respect
to the interchange α ↔ β. If this symmetry is broken the two classes of modes
mix. We shall consider below the effect of the viscosity of normal fluid which
by definition acts only in the normal component and hence breaks the α ↔ β
symmetry.

The second order virial equation for viscous fluids, quite generally, acquires
the term

Pα,ij =
∫

Vα

Pα,ijdx, Pα,ik ≡ δα,NρNν

(
∂uαi

∂xk
+

∂uα,k

∂xi
− 2

3
∂uα,l

∂xl
δik

)
, (66)

which is called the shear-energy tensor; ν is the kinematic viscosity3. For back-
ground states which are stationary and without internal motions the variation
of the stress-energy tensor is

δPα,ij = δα,N

∫
Vα

ρNν
∂

∂t

(
∂ξα,i

∂xk
+

∂ξα,k

∂xi
− 2

3
∂ξαl

∂xl
δik

)
. (67)

3 We use the same symbol ν for the kinematic viscosity and for the unit vector along
the vortex circulation; no confusion should arises as the latter quantity does not
appear in the virial equations.
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It is impossible in general to express the variations of the stress-energy tensor in
terms of the virials Vα,i;j . However, in the low Reynolds-number approximation,
this tensor can be approximated in a perturbative manner using as the leading
order approximation the proper solutions for the displacements corresponding
to the inviscid limit. Since the latter are linear functions of the virials, ξNi =∑3

k=1 5VN,i;kxk/MNa2
k, with MN being the mass in the normal fluid, one finds

δPα,ij = 5νδα,N
d

dt

(
Vα,i;j

a2
j

+
Vα,j;i

a2
i

)
(68)

in the incompressible limit. Thus, the second order virial equation which includes
the viscosity of the normal matter becomes

fα
d2Vα,i;j

dt2
= 2εilmΩmfα

dVα,l;j

dt
+ Ω2fαVα,ij −ΩiΩkfαVα,kj + δijδΠα

− fαπGρ

(
2BijVα,ij − a2

i δij

3∑
l=1

AilVα,ll

)

− a2
jfαfβπGρ

[
2Aij(Vα,ij − Vβ,ij) + δij

3∑
l=1

Ail(Vα,ll − Vβ,ll)
]

− SαβfαωSβik
d

dt

(
Vα,k;j − Vβ,k;j

)
− δα,N5νfα

d

dt

(
Vα,i;j

a2
j

+
Vα,j;i

a2
i

)
.

(69)

Apart from the last term, the remaining terms in (69) manifestly preserve the
symmetry with respect to the interchange α ↔ β; note that they might have
different parities under this transformation. The last term breaks this symmetry
as the viscosity acts only in the normal fluid.

3.3 Third order virial equations

To obtain the third order virial equation we take the second moment of (25) and
integrate over Vα:

d

dt

(∫
Vα

d3xραuα,ixjxk

)
= 2εilmΩm

(∫
Vα

d3xραuα,lxjxk

)
+ Ω2Iα,ijk

− ΩiΩlIα,ljk + 2(Tα,ij;k + Tα,ik;j) + δijΠα,k + δikΠα,j

+ Mαβ,ijk + Fαβ,ijk, (70)

where

Iα,ijk ≡
∫

Vα

d3x ραxixjxk (71)

Πα,i ≡
∫

Vα

d3x pα,i (72)
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Tα,ij;k ≡ 1
2

∫
Vα

d3xραuα,iuα,jxk (73)

Mαβ,ijk ≡ −
∫

Vα

d3xxjxkρα
∂φ

∂xi
(74)

Fαβ,ijk ≡
∫

Vα

d3xFαβ,ixjxk. (75)

Below, we compute only the perturbations of the tensors in the last line of (70),
which correspond to the gravitational potential energy and the mutual friction;
the perturbations of the remainder terms is computed in analogy to EFE.

For the Eulerian perturbation of the gravitational potential tensor we have

− δ

∫
Vα

d3xxjxkρα
∂φ

∂xi
= −δG

∫
Vα

d3xxjxkρα(x)

[∫
Vα

d3x′ρα(x′)
(xi − x′

i)
|x− x′|3

+
∫

Vβ

d3x′ρβ(x′)
(xi − x′

i)
|x− x′|3

]
. (76)

Assuming Vα = V and ρα = fαρ(x) in the background equilibrium, and defining
[cf. EFE, Chap. 2, (14) and (22)]

Bij ≡ G

∫
V

d3x′ρ(x′)
(xi − x′

i)(xj − x′
j)

|x− x′|3 , (77)

Dik;j ≡ G

∫
V

d3x′ρ(x′)x′
j

(xi − x′
i)(xk − x′

k)
|x− x′|3 , (78)

one finds for the ‘self-interaction’ term that

−δ
∫

Vα

d3xxjxkρα
∂φα

∂xi
= −1

2
f2

α

∫
V

d3xρ(x)ξα,l

∂

∂xl
(Bijxk +Dij;k)

− 1
2
f2

α

∫
V

d3xρ(x)ξα,l

∂

∂xl
(Bikxj +Dik;j) ≡ f2

α(δMα,ij;k + δMα,ik;j). (79)

To arrive at the symmetric in the indexes k, j we used the identity

Bijxk +Dik;j = Bikxj +Dij;k. (80)

The perturbation of mutual interaction term in (76), assuming again Vα = Vβ =
V and ρα = fαρ(x) in the background equilibrium is

− δ

∫
Vα

d3xxjxkρα
∂φβ

∂xi
= −fαfβ

∫
V

d3xρ(x)ξα,l(x)
∂

∂xl
(Bijxk +Dik;j)

− fαfβ

∫
V

d3xρ(x)
[
ξα,l(x)− ξβ,l(x)

] ∂2Djk

∂xl∂xi
(81)

where

Djk = G

∫
V

d3x′ ρ(x
′)x′

kx
′
j

|x− x′| . (82)
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Combining (79) and (81) we find

− δ

∫
Vα

d3xxjxkρα
∂φ

∂xi
= −fα

∫
V

d3xρ(x)ξα,l

∂

∂xl
(Bijxk +Dik;j)

− fαfβ

∫
V

d3xρ(x)
[
ξα,l(x)− ξβ,l(x)

] ∂2Djk

∂xl∂xi
. (83)

For the perturbation of the mutual friction tensor, assuming stationary back-
ground equilibrium, we find

δFαβ,ijk = δ

∫
Vα

d3xFαβ,ixjxk

= −SαβfS

∫
V

d3xxjxkρ(x)ωSβil

(
dξS,l

dt
−

dξN,l

dt

)
. (84)

Putting together all the terms we arrive at the third order virial equation

fα
d2Vα,i;jk

dt2
= 2εilmΩmfα

dVα,l;jk

dt
+ δijδΠα,k + δikδΠα,j

+ (Ω2δil −ΩiΩl)fαVα,ljk − fα

∫
V

d3xρ(x)ξα,l

∂

∂xl
(Bijxk +Dik;j)

− fαfβ

∫
V

d3xρ(x)
[
ξα,l(x)− ξβ,l(x)

] ∂2

∂xl∂xi
Djk

− SαβfSωSβil

[
dVS,l;jk

dt
− dVN,l;jk

dt

]
, (85)

where the symmetric in its indexes third order virial is defined as

Vα,ijk = Vα,i;jk + Vα,j;ki + Vα,k;ij . (86)

To separate the CM and relative motions of the two fluids introduce the virials

Vi;jk ≡ fSVS,i;jk + fNVN,i;jk Ui;jk ≡ VS,i;jk − VN,i;jk. (87)

The new set of equations in terms of these virials is

d2Vi;jk

dt2
= 2εilmΩm

dVl;jk

dt
+ δijδΠk + δikδΠj + (Ω2δil −ΩiΩl)Vljk

−
∫

V

d3xρ(x)
[
fSξS,l + fNξN,l

] ∂

∂xl
(Bijxk +Dik;j) ,

(88)

and

d2Ui;jk

dt2
=
[
2εilmΩm −

(
1 +

fS

fN

)
ωSβil

]
dUl;jk

dt
+ δij

(
δΠS,k

fS
− δΠN,k

fN

)
+ δik

(
δΠS,j

fS
− δΠN,j

fN

)
+ (Ω2δil −ΩiΩl)Uljk − 2πGρAiUijk

− 2
∫

V

d3xρ(x)[ξS,l − ξN,l]
∂

∂xl
(Bijxk +Dik;j) . (89)
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To obtain the last term in (89) we used the relations [cf. EFE, Chap. 2, equations
(29) and (28)]

∂Djk

∂xi
= Dji;k + xj

∂Dk

∂xi
,

∂Dk

∂xi
= Bik + xk

∂φ

∂xi
, (90)

and the explicit expression for the gravitational potential of an ellipsoid, (37).
The terms in the last lines of (88) and (89) can be worked out to a form in-
volving linear combinations of virials and index symbols, however the present
form already makes clear that they will involve the virials describing the CM
and relative motions, respectively.

4 Small amplitude oscillations
of superfluid Maclaurin spheroid

In this section, we specialize our discussion to Maclaurin spheroids, the equilib-
rium figures of a self-gravitating fluid with two equal semi-major axis, say a1
and a2, rotating uniformly about the third semi-major axis a3 (i.e. the x3 axis).
For these figures in many cases analytical results are available. The superfluid
oscillations of more complicated non-axisymmetric figures like the Jacobi and
Roche ellipsoids require numerical analysis which is beyond the scope of this re-
view (see [11]). The sequence of quasi-equilibrium figures of Maclaurin spheroids
can be parameterized by the eccentricity ε2 = 1−a2

3/a
2
1, with (squared) angular

velocity Ω2 = 2ε2B13, in units of (πρG)1/2.
Surface deformations related to various modes can be classified by corre-

sponding terms of the expansion in surface harmonics labeled by indexes l,m.
We shall concentrate below on the first and second harmonic surface deforma-
tions correspond to l = 1, 2 and −1 ≤ m ≤ 1, −2 ≤ m ≤ 2 respectively.

4.1 First order

If the time-dependence of the Lagrangian displacements is of the form

ξα(xi, t) = ξα(xi)eλt, (91)

then the characteristic equation for the first order relative oscillation modes
becomes

λ2Ui = 2εilmΩmλUl + (Ω2δij −ΩiΩj)Uj − 2AiUi − 2Ωβ̃ijλUj , (92)

where all frequencies are measured in units (πGρ)1/2, β̃ij ≡ (1+fS/fN )βij , and,
since we assumed no internal motions in the background equilibrium, ωS = 2Ω.
The CM oscillations are trivial as they can be always eliminated by a transfor-
mation to the center-of-mass reference frame.
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Assume that the ellipsoid is rotating about the x3 axis. Then, writing (92)
in components, we find(

λ2 + 2Ωβ̃λ + 2A1 −Ω2
)
U1 − 2Ω(1− β̃′)λU2 = 0, (93)(

λ2 + 2Ωβ̃λ + 2A2 −Ω2
)
U2 + 2Ω(1− β̃′)λU1 = 0, (94)(

λ2 + 2Ωβ̃′′λ + 2A3

)
U3 = 0. (95)

The equations which are even and odd with respect to the index 3 decouple.
For the perturbations along x3 the relative displacement vanishes, U3 = 0. (95)
(which is odd in index 3) gives, on writing λ = iσ,

σodd
1,2 = ±

√
2A3 − β̃′′2Ω2 + iβ̃′′Ω. (96)

The first order odd parity oscillations are stable; they are purely imaginary if
β̃′′2 ≥ 2A3/Ω

2, otherwise they develop a real part. For Maclaurin spheroids
2A3/Ω

2 ≥ 5.040; the lower bound corresponds to eccentricity of the ellipsoid
ε = 0.865. For Jacobi ellipsoids this minimal value is slightly lower, 2A3/Ω

2 =
4.148, and occurs at the point of the bifurcation of the Jacobi sequence from the
Maclaurin sequence where the axis-ratio is defined by Cos−1(a3/a1) = 54.48.
Since the β̃′′-coefficient is the measure of friction along the average direction of
the vorticity, it is reasonable to assume that β̃′′ 	 β̃, β̃′; and since β̃ ≤ 1/2 and
β̃′ ≤ 1.

The characteristic equations for the modes even in index 3 is

λ4 + 4Ωβ̃λ3 + 2
[
(A1 + A2) + Ω2(1 + 2β̃2 − 4β̃′ + 2β̃′2)

]
λ2

+4β̃Ω
(
A1 + A2 −Ω2)λ + (2A1 −Ω2)(2A2 −Ω2) = 0. (97)

For Maclaurin spheroids (A1 = A2), upon writing λ = iσ, the solution becomes

σeven
1,2 = iβ̃Ω ±

√
2A1 −Ω2[1− β̃2 − (1− β̃′)2]. (98)

These modes represent stable, damped oscillations since the inequality 1− β̃2 −
(1− β̃′)2 ≤ 2A1/Ω

2 is always fulfilled. Indeed, the left-hand side is always larger
than unity, while the maximal value of the right-hand side is 1/2. The latter
upper limit is easy to deduce by minimizing the left-hand side of the inequality
with respect to 0 ≤ η/ρSωS ≤ ∞ defined via the relations (24).

4.2 Second order

Second order harmonic deformations correspond to l = 2 with five distinct values
of m, −2 ≤ m ≤ 2. Again, let us assume time-dependent Lagrangian displace-
ments to have the form (91). The characteristic equation for the second order



The tensor virial method 117

oscillation modes become

λ2Vi;j = 2εilmΩmλ + Ω2Vij −ΩiΩkVkj

+ δijδΠ − πGρ

(
2BijVij − a2

i δij

3∑
l=1

AilVll

)

− 5νfNλ

(
Vi;j

a2
j

+
Vj;i

a2
i

)
+ 5νfNfSλ

(
Ui;j

a2
j

+
Uj;i

a2
i

)
, (99)

λ2Ui;j = 2εilmΩmλUl;j + Ω2Uij −ΩiΩUkj

+ δij

(
δΠS

fS
− δΠN

fN

)
− 2πGρAiUij

− 2Ωβ̃ikλUk;j + 5νλ

(
Vi;j

a2
j

+
Vj;i

a2
i

)
− 5νfSλ

(
Ui;j

a2
j

+
Uj;i

a2
i

)
, (100)

where the frequencies are measured in the units (πρG)1/2. (99) and (100), which
(if written in components) constitute a coupled set of 18 equations each, con-
tain all the second harmonic modes of isolated, incompressible, and irrotational
superfluid ellipsoids. In the next sections, we concentrate on solutions of these
equations for the special case of Maclaurin spheroids, i.e. the case where the
axial symmetry about the axis of rotation is assumed.

4.3 Transverse shear modes (l = 2, m = |1|)
These modes correspond to surface deformations with |m| = 1 and represent
relative shearing of the northern and southern hemispheres of the ellipsoid. They
are determined by the eight components of the (99) and (100) which are odd in
index 3; i.e. V3;i, Vi;3, U3;i and Ui;3, where i = 1, 2. The odd equations for the
virials describing the CM-motions are(

λ2 + fNνλ + 2B13
)
V13 −

(
λ2 + γfNνλ + 2B13

)
V1;3

−fNfSνλU13 + fNfSγνλU1;3 = 0, (101)(
λ2 + fNνλ + 2B23

)
V23 −

(
λ2 + γfNνλ + 2B13

)
V2;3

−fNfSνλU23 + fNfSγνλU2;3 = 0, (102)(
λ2 − γfNνλ

)
V1;3 − 2ΩλV2;3 +

(
2B13 −Ω2 + fNνλ

)
V13

+fNfSγνλU1;3 − fNfSνλU13 = 0, (103)(
λ2 − γfNνλ

)
V2;3 + 2ΩλV1;3 +

(
2B13 −Ω2 + fNνλ

)
V23

+fNfSγνλU2;3 − fNfSνλU23 = 0, (104)

where γ ≡ 1−a2
1/a

2
3 and we have redefined the kinematic viscosity as ν′ = 5ν/a2

1
and dropped the prime in the equations above. The relations (58) were used to
manipulate the original equations to the form above. For the virials describing
the relative motions the odd parity equations are(

λ2 + 2Ωβ̃′′λ + fSνλ + 2A3

)
U13 −

(
λ2 + 2Ωβ̃′′λ + γfSνλ

)
U1;3
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−νλV13 + γνλV1;3 = 0, (105)(
λ2 + 2Ωβ̃′′λ + fSνλ + 2A3

)
U23 −

(
λ2 + 2Ωβ̃′′λ + γfSνλ

)
U2;3

−νλV23 + γνλV2;3 = 0, (106)(
λ2 + 2Ωβ̃λ− γfSνλ

)
U1;3 + (2A1 −Ω2 + fSνλ)U13 − 2Ω(1− β̃′)λU2;3

+γνλV1;3 − νλV13 = 0, (107)(
λ2 + 2Ωβ̃λ− γfSνλ

)
U2;3 + (2A1 −Ω2 + fSνλ)U23 + 2Ω(1− β̃′)λU1;3

+γνλV2;3 − νλV23 = 0. (108)

According to the symmetries of the original virial equation (69), the two sets
(101)-(104) and (105)-(108) decouple in the limit ν → 0, as they should. The
dissipation in the first set is driven by the viscosity of the normal matter; the
superfluid contributes to the damping of the CM modes indirectly, via their
coupling to the relative oscillation modes. In the second set the normal matter
viscosity directly renormalizes the mutual friction damping time scale (2Ωβ̃ →
2Ωβ̃ − γfSν), thus reducing the damping of the relative modes. Note that this
renormalization vanishes for a sphere since then γ = 0. One important feature of
each set, which remains preserved when they are coupled, is the balance between
the tensors describing the perturbations of the rotational kinetic energy and
gravitational energy; in the first set only the two-index symbols enter (Bij),
while in the second one appear only the one-index symbols (Ai). As a results the
neutral points (if any) along a sequence of ellipsoids (parameterized in terms of
eccentricity) remain unaffected by the coupling between the different sets. This
implies that as long as there are no neutral points for the relative transverse-
shear modes in the uncoupled case, the conclusion about their stability can not
be affected by the viscosity of the normal component. The CM modes do not
show neutral points along the Maclaurin sequence and therefore their stability
is guaranteed.

In the absence of the viscosity the components of (99), which are odd in index
3, decouple into two separate sets. The first set for virials Vij , which describes
the CM motions of the fluids is identical to the one found in EFE:(

λ2 + 2B13
)
V13 −

(
λ2 + 2B13

)
V1;3 = 0, (109)(

λ2 + 2B23
)
V23 −

(
λ2 + 2B13

)
V2;3 = 0, (110)

λ2V1;3 − 2ΩλV2;3 +
(
2B13 −Ω2)V13 = 0, (111)

λ2V2;3 + 2ΩλV1;3 +
(
2B13 −Ω2)V23 = 0. (112)

The corresponding modes are described in EFE (see also Fig. 1 below). The
second set, which describes the relative oscillations of the fluids, is(

λ2 + 2Ωβ̃′′λ + 2A3

)
U13 −

(
λ2 + 2Ωβ̃′′λ

)
U1;3 = 0, (113)(

λ2 + 2Ωβ̃′′λ + 2A3

)
U23 −

(
λ2 + 2Ωβ̃′′λ

)
U2;3 = 0, (114)
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Fig. 1. The real (upper panel) and imaginary (lower panel) parts of the CM and
relative transverse-shear modes of superfluid Maclaurin spheroid as a function of ec-
centricity for values of η/ωSρS = 0.0 (solid line), 0.5 (long-dashed line), 1 (dashed line),
and 50 (dashed-dotted line). The left panel corresponds to the solutions in the inviscid
limit ν = 0. The right panel corresponds to the case where ν = 4β̃Ω. The fraction of
the normal fluid fN = 0.1.

(
λ2 + 2Ωβ̃λ

)
U1;3 + (2A1 −Ω2)U13 − 2Ω(1− β̃′)λU2;3 = 0, (115)(

λ2 + 2Ωβ̃λ
)
U2;3 + (2A1 −Ω2)U23 + 2Ω(1− β̃′)λU1;3 = 0. (116)

Let us concentrate first on the second set and consider the limit of zero mu-
tual friction (i.e. the case where the two fluids are coupled only by their mutual
gravitational attraction). The characteristic equation can be factorized by sub-
stituting λ = iσ to find

σ
[
σ2 − 2(A1 + A3) + Ω2]± 2Ω(σ2 − 2A3) = 0. (117)

The purely rotational mode σ = Ω decouples only in the spherical symmetric
limit where A1 = A3. If only axial symmetry is imposed then the third order
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characteristic equation is

σ3 ± 2Ωσ2 +
[
−2 (A1 + A3) + Ω2]σ ∓ 4A3 Ω = 0. (118)

It is easy to prove that the modes are always real. Three complementary modes
follow from (118) via the replacement Ω → −Ω. Fig. 1 shows the real and
imaginary parts of the transverse-shear modes along the Maclaurin sequence.
The left panel shows the results when ν = 0. In that case the relative modes,
which start for Ω → 0 at 1.63, are affected only by the mutual friction (the
corresponding characteristic equation is of order 6). The CM modes, which start
for Ω → 0 at 1.03, are unaffected by the mutual friction. The modes which
start for Ω → 0 at 0, correspond to the rotational frequency of the spheroid
in the low-Ω limit. The right panel shows the same modes but when ν/β̃Ω =
4. Interestingly, while the viscous dissipation considerably affects the relative
modes, its effect on the real frequencies of the CM modes is marginal.

The damping via mutual friction, as seen from the left panel of Fig. 1, is
maximal for η/ρSω = 1 and decreases to zero for η/ρSω → 0 and η/ρSω →∞.
This behavior is specific to the coupling between the superfluid and the normal
fluid via the vortex state; the communication between these components is fastest
when the magnitude of the forces on the vortex exerted by the superfluid and
normal components are close. In the limiting cases the vortices are locked either
in the superfluid (η/ρSω → 0) or the normal fluid (η/ρSω →∞) and hence the
damping is ineffective.

To conclude, the transverse-shear modes for the relative and CM modes re-
main stable along the entire sequence of superfluid Maclaurin spheroids.

4.4 Toroidal modes (l = 2, m = |2|)
These modes correspond to |m| = 2 and the motions in this case are confined to
planes parallel to the equatorial plane. The toroidal modes are determined by
the even in index 3 components of (99) and (100) for the virials Vi;i, Vi;j , Ui;i
and Ui;j , where i, j = 1, 2. These equations can be manipulated to a set of four
equations, which read(

λ2 + 2fNνλ + 4B12 − 2Ω2)V12 + Ωλ(V11 − V22)
−2fNfSνλU12 = 0, (119)(

λ2 + 2fNνλ + 4B12 − 2Ω2) (V11 − V22)
−4ΩλV12 − 2fNfSνλ(U11 − U22) = 0, (120)(

λ2 + 2Ωβ̃λ + 2fSνλ + 4A1 − 2Ω2
)
U12

+Ω(1− β̃′)λ(U11 − U22)− 2νλV12 = 0, (121)(
λ2 + 2Ωβ̃λ + 2fSνλ + 4A1 − 2Ω2

)
(U11 − U22)

−4Ω(1− β̃′)λU12 − 2νλ(V11 − V22) = 0. (122)
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Fig. 2. The CM and relative toroidal modes of superfluid Maclaurin spheroid. The
imaginary parts shown in grey are magnified by factor 10. Other conventions are the
same as in Fig. 1. Note the secular instability at the bifurcation point ε = 0.81 and the
dynamical instability at the point ε = 0.93.

In the inviscid limit equations above decouple into separate sets for the CM and
relative oscillations. The CM oscillations are described by the equations(

λ2 + 4B12 − 2Ω2)V12 + Ωλ(V11 − V22) = 0, (123)(
λ2 + 4B12 − 2Ω2) (V11 − V22)− 4ΩλV12 = 0; (124)

their solutions are documented in EFE. The relative oscillations are described
by the following equations(

λ2 + 2Ωβ̃λ + 4A1 − 2Ω2
)

(U11 − U22)− 4Ωλ(1− β̃′)U12 = 0, (125)(
λ2 + 2Ωβ̃λ + 4A1 − 2Ω2

)
U12 + Ωλ(1− β̃′)(U11 − U22) = 0. (126)

and the characteristic equation for the relative toroidal modes is:

λ4 + 4β̃Ωλ3 + (8A1 + 4β̃2Ω2 − 8β̃′Ω2 + 4β̃′2Ω2)λ2

+8β̃Ω(2A2 −Ω2)λ + 4(2A1 −Ω2)2 = 0. (127)
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In the frictionless limit the modes can be found analytically from

(λ2 + 4A1 − 2Ω2)2 + 4Ω2λ2 = 0, (128)

which is factorized by writing λ = iσ. The two solutions are then

σ1,2 = Ω ±
√

4A1 −Ω2. (129)

and there are two complementary modes which are found by substituting −Ω
for Ω. If the mutual friction is included the characteristic equation describing
the relative oscillation modes is of order 4; in the presence of viscosity of the
normal component, again the CM and relative oscillation modes couple and
the characteristic equation is of order 8. The real and imaginary parts of the
dissipative toroidal modes are shown in Fig. 2, for the same values of parameters
as in Fig. 1. As for the transverse-shear modes, the CM and relative modes start
at 1.03 and 1.63, respectively, when Ω → 0. In the inviscid limit (left panel), the
CM modes are unaffected, as they should, while the relative modes are driven
against each other and merge in the limit of strong coupling. The damping of
the relative modes is finite, while for the CM modes it vanishes exactly up to
the point of the onset of the dynamical instability at ε = 0.95; beyond this
point a mode becomes dynamically (i.e. in the absence of dissipation) unstable.
If the kinematic viscosity is finite (right panel), the real parts of the relative
modes are strongly affected, while the effect of the viscosity on the CM modes is
marginal. The imaginary part of a CM mode changes its sign at the bifurcation
point, where 2B12 = Ω2 and ε = 0.813. This signals the onset of the classical
secular instability of the Maclaurin spheroid. The new feature here is that the
mutual friction contributes to the secular instability of a CM-mode. On the
other hand, ordinary viscosity does not drive the relative modes unstable, in
agreement with the fact that there are no neutral points for these modes along
the entire Maclaurin sequence. One may conclude that the agents which break
the superfluid/normal fluid symmetry can not cause an instability of the relative
modes. The only possibility that the relative modes become unstable is a shift
of the balance between the kinetic and potential energy perturbations, which
might occur for compressible fluids, e.g. polytrops. This problem will be studied
elsewhere.

4.5 Pulsation mode (l = 2, m = 0)

Pulsation modes (or breathing modes) are the generalization of the radial pul-
sation modes of a sphere to the case of rotation. They correspond to l = 2 and
m = 0 indexes in the expansion in spherical harmonics. The pulsation modes
are determined by the full set of equations which are even in index 3. By suit-
able combination of the equations for the virials Vi;i, Vi;j , Ui;i and Ui;j , where
i = 1, 2, 3 and j = 1, 2 the original set of equations can be reduced to(

λ2/2 + fNνλ + 4B11 − 2B13 −Ω2) (V11 + V22)
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−
[
λ2 − 2fNν(1− γ)λ + 6B33 − 2B13

]
V33

+2Ωλ(V1;2 − V2;1)− fNfSνλ(U11 + U22)− 2fNfSν(1− γ)U33 = 0, (130)
λ2(V1;2 − V2;1)−Ωλ(V11 + V22) = 0, (131)(
λ2/2 + 2A1 −Ω2 + fSνλ + Ωβ̃λ

)
(U11 + U22)

−
[
λ2 + 2Ωβ̃′′λ + 4A3 + 2fSν(1− γ)λ

]
U33

+2Ω(1− β̃′)λ(U1;2 − U2;1)− νλ(V11 + V22)− 2ν(1− γ)λV33 = 0, (132)

(λ2 + 2Ωβ̃λ)(U1;2 − U2;1)−Ω(1− β̃′)λ(U11 + U22) = 0. (133)

The characteristic equation is found by supplementing these equations by the
divergence free constraint on the virials of the CM and relative motions:

3∑
i=1

Vii

a2
i

= 0,
3∑

i=1

Uii

a2
i

= 0. (134)

An equivalent form of the divergence free constraint for Maclaurin spheroids can
be written in terms of eccentricity, (V11 + V22)(1 − ε2) + V33 = 0 and similarly
for Uii.

In absence of viscosity the equations above decouple into two independent
sets for CM and relative oscillations. The CM oscillations are described by(

λ2/2 + 4B11 − 2B13 −Ω2) (V11 + V22)

−
(
λ2 + 6B33 − 2B13

)
V33 + 2Ωλ(V1;2 − V2;1) = 0, (135)

λ2(V1;2 − V2;1)−Ωλ(V11 + V22) = 0, (136)

and coincide with the pulsation modes treated in EFE. The relative oscillation
modes are defined by the equations(

λ2/2 + Ωβ̃λ−Ω2 + 2A1

)
(U11 + U22)

+2Ωλ(1− β̃′)(U1;2 − U2;1)− (λ2 + 4A3 + 2Ωβ̃′′λ)U33 = 0, (137)(
λ2 + 2Ωβ̃λ

)
(U1;2 − U2;1)−Ωλ(1− β̃′)(U11 + U22) = 0, (138)

which can be combined to:[(
λ2 + 2Ωβ̃λ− 2Ω2 + 4A1

)
(λ2 + 2Ωβ̃λ) + 4Ω2λ2(1− β̃′)2

]
(U11 + U22)

−2
[(

λ2 + 2Ωβ̃λ
)(

λ2 + 2Ωλβ̃′′ + 4A3

)]
U33 = 0. (139)

The modes are found by supplementing this equation by the divergence free
condition (134). The third order characteristic equation in the inviscid limit is

(3− 2ε2)λ3 + [8β̃Ω + 4β̃′′Ω − 4(β̃ + β̃′′)ε2Ω]λ2 + [4A1 + 8(1− ε2)A3

+2Ω2 + 4β̃2Ω2 − 8β̃′Ω2 + 4β̃′2Ω2 + 8(1− ε2)β̃β̃′′Ω2]λ
+8A1β̃Ω + 16(1− ε2)A3β̃Ω − 4β̃Ω3 = 0, (140)
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where the trivial mode λ = 0 is neglected. In the frictionless limit we find (λ = iσ
as before)

σ = ±
[
2Ω2 + 4A1 + 8A3(1− ε2)

(3− 2ε2)

]1/2

. (141)

The pulsation modes for a sphere follow in the limit (ε,Ω) → 0: for a sphere
Ai/(πρG) = 2/3, and (141) reduces to σ2 = 8/3 [σ is given in units of (πρG)1/2].
This result could be compared with the pulsation modes of an ordinary sphere:
σ2 = 16/15. Thus a superfluid sphere, apart form the ordinary pulsations, shows
pulsations at frequencies roughly twice as large as the ordinary ones. In the
general case where the viscosity of the normal fluid is taken into account the
characteristic equation is of fifth order. The real and imaginary parts of the roots
are shown in Fig. 3. In the inviscid limit the CM modes are again unaffected,
while the relative modes are suppressed by the mutual friction. The damping of
these modes is maximal when η/ρSω = 1 and the motions correspond to stable,
damped oscillations. In the presence of viscosity, the relative modes are strongly
damped and eventually become neutral. The CM modes are weakly affected. The

Fig. 3. The CM and relative pulsation modes of superfluid Maclaurin spheroid. Con-
ventions are the same as in Fig. 1 and 2.
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imaginary parts remain always positive, i.e. one finds stable, damped oscillations.
Note that at the point where a relative pulsation mode becomes neutral the
number of the imaginary components increases by one (as generally expected for
the roots of polynomials), but there are no changes in the sign of the imaginary
part of the neutral mode.

5 Summary

Let us briefly summarize the main qualitative features of the oscillations of
superfluid self-gravitating systems [11]:

• The oscillation modes of the superfluid ellipsoids separate into two generic
classes which correspond to co-moving and relative oscillations. The oscil-
lation frequencies of these two classes have distinct values in the both slow
and rapid rotation limits. The first class of oscillations is identical to those
of classical single-fluid ellipsoids in the incompressible and inviscid limits.
Corresponding modes are undamped if the Euler equations of fluids are
symmetric/anti-symmetric with respect to the interchange α ↔ β (the in-
dexes which label the fluids) . When the fluids are coupled by mutual friction
and mutual gravitational attraction this symmetry is preserved.

• The second class of oscillations, which is new, corresponds to relative motions
of the fluids. The modes are damped by the mutual friction between the su-
perfluid and the normal fluid. These modes correspond to stable oscillations.

• The co-moving (CM) modes emit gravitational radiation and undergo radi-
ation reaction instabilities in full analogy to single-fluid ellipsoids [13]. The
relative modes do not emit gravitational radiation at all, since the mass cur-
rent associated with them is zero. This picture must hold true for a more
general class of Chandrasekhar-Friedman-Schutz (CFS) radiation reaction
instabilities that are intrinsic to self-gravitating Newtonian fluids [14].

• If the α ↔ β symmetry is broken the two classes of modes mix, for ex-
ample, when the normal fluid is viscous. The main effect of the mixing is
the renormalization of the mutual friction and viscosity. The relative modes
remain stable as there are no distinct neutral points for these modes along
the ellipsoidal sequences. The CM modes become unstable at the classical
points of onset of secular/dynamical instabilities, for example at the point
of bifurcation of the Maclaurin spheroid into a Jacobi ellipsoid.

These qualitative features are based on general symmetries of underlying hy-
drodynamic equations and the conditions of equilibrium of self-gravitating fluids
which are independent of the superfluid nature of underlying fluids (e.g. the
existence of bifurcation points). Therefore we may conclude that these features
will be preserved in more complex models of oscillations of superfluid neutron
stars.
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Neutron Star Crusts
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Abstract. The formation, structure, composition, and the equation of state of neutron
star crusts are described. A scenario of formation of the crust in a newly born neutron
star is considered and a model of evolution of the crust composition during the early
neutron star cooling is presented. Structure of the ground state of the crust is studied.
In the case of the outer crust, recent nuclear data on masses of neutron rich nuclei are
used. For the inner crust, results of different many-body calculations are presented,
and dependence on the assumed effective nucleon-nucleon interaction is discussed. Un-
certainties concerning the bottom layers of the crust and crust-liquid interface are
illustrated using results of various many-body calculations based on different effective
nucleon-nucleon interactions. A scenario of formation of a crust of matter-accreting
neutron star is presented, and evolution of the crust-matter element under the in-
creasing pressure of accreted layer is studied. Within a specific dense matter model,
composition of accreted crust is calculated, and is shown to be vastly different from
the ground-state one. Non-equilibrium processes in the crust of mass-accreting neutron
star are studied, heat release due to them is estimated, and their relevance to the prop-
erties of X-ray sources is briefly discussed. Equation of state of the ground-state crust
is presented, and compared with that for accreted crust. Elastic properties of the crust
are reviewed. Possible deviations from idealized models of one-component plasmas are
briefly discussed.

1 Introduction

The crust plays an important role in neutron star evolution and dynamics. Its
properties are crucial for many observational properties, despite the fact that
the crust mass constitutes only ∼ 1% of neutron star mass, and its thickness
is typically less than one tenth of the star radius. The crust separates neutron
star interior from the photosphere, from which X-ray radiation is emitted. The
transport of heat from neutron star core to the star surface is determined by
the thermal conductivity of the outer layers of the crust, which is crucial for
determining the relation between observed X-ray flux and the temperature of
neutron star core.

Electrical resistivity of the crust is expected to be important for the evo-
lution of neutron star magnetic field. Both thermal conductivity and electrical
resistivity depend on the structure of the crust, its nuclear composition, and the
presence and number of crystalline defects and impurities. During some stages
of neutron star cooling, neutrino emission from the crust may significantly con-
tribute to total neutrino losses from stellar interior. The presence of a crystal
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lattice of atomic nuclei in the crust is mandatory for modeling of radio–pulsar
glitches. Presence of solid crust enables excitation of toroidal modes of oscilla-
tions. The toroidal modes in a completely fluid star have all zero frequency, but
the presence of a solid crust gives them nonzero frequencies ∼kHz. Presence of
the crust can also be important for non-radial pulsations excited in the liquid
core, because of specific boundary conditions which are to be imposed at the
solid-liquid boundary. Due to its solid character, neutron star crust can be a site
of elastic stresses, and can build-up elastic strain during star evolution (cooling,
spin-down). In contrast to fluid core, the crust can therefore support deviations
of the stellar shape from the axial symmetry, and make from rapidly rotating
pulsar an interesting source of gravitational waves. Instabilities in the fusion
of light elements, taking place in the outer layers of the crust of an accreting
neutron star, are thought to be responsible for the phenomenon of X-ray bursts.

The present review is devoted to the structure, composition, and equation
of state of neutron star crust. In Sect.2 we briefly describe formation of the
crust of a newly born neutron star. Structure, composition, and equation of
state of the outer crust in the ground state approximation is described in Sect.3.
Theoretical models of the inner crust in the ground state approximation and
with ρ <∼ 1014 g cm−3 are presented in Sect. 4. Section 5 is devoted to the
presentation of theoretical models of the ground state of the bottom layers of
the inner crust, with ρ >∼ 1014 g cm−3, and to determination of the location of
and conditions at the bottom edge of the crust. In Sect. 6 we consider a scenario
of formation of the crust in accreting neutron star. Then, in Sect. 7 we study
non-equilibrium nuclear processes in the crust interior, and derive its structure
and nuclear composition. Sect. 8 is devoted to the equation of state of neutron
star crust, both in the ground state approximation and in the case of an accreted
crust. Elastic properties of the crust are discussed in Sect. 9. Possible deviations
from idealized crust models studied in the preceding sections are briefly reviewed
in Sect.10.

2 Formation of the crust in a newly born neutron star

Neutron star formed in gravitational collapse of a stellar core is initially very hot,
with internal temperature ∼ 1011 K. At such high temperature, the composition
and equation of state of the outer envelope of a newly-born neutron star, with
ρ <∼ 1014 g cm−3 (nb <∼ 0.1 fm−3), is different from that of a one-year old neutron
star. This envelope of a newly-born neutron star will eventually become the crust
of neutron star.

We will restrict ourselves to the case in which matter is transparent to neu-
trinos, a condition satisfied for T <∼ 1010 K (kBT <∼ 1 MeV). Hot envelope is
then a mixture of heavy and light nuclei (mostly α-particles, because of their
large binding energy of 28.3 MeV), neutrons, protons, electrons, positrons, and
photons. At high densities and temperatures the density of nucleons outside
nuclei can be large, and a consistent treatment of both nuclei and nucleons is
required. Nuclei and nucleons outside them should be described using the same
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Fig. 1. Mass fractions of different constituents of the outer envelope of a newly born
neutron star versus matter density, at different temperatures T9 = T/(109 K). Beta
equilibrium assumed. After Haensel et al. [40]. Calculations performed for the Lattimer
and Swesty [53] model, with a specific choice of the compression modulus of cold
symmetric nuclear matter at the saturation density, K0 = 180 MeV.

nucleon interaction (nucleon hamiltonian), and modifications of nuclear surface
properties, and pressure exerted by nucleons on nuclei, have to be calculated in a
consistent way. At high densities, where the distance between nuclei is no longer
much larger than nuclear size, one has to take into account modification of the
nuclear Coulomb energy. Another important complication is that, at tempera-
tures under consideration, excited states of nuclei become populated and must
therefore be considered when calculating thermodynamic quantities.

In what follows, we will describe results, obtained using a version of compress-
ible liquid–drop model of nuclei developed by Lattimer and Swesty [53], with a
specific choice of compression modulus of symmetric nuclear matter at satura-
tion (equilibrium) density, K0 = 180 MeV. We assume nuclear equilibrium, as
well as beta equilibrium of dense hot matter. The assumption of nuclear equilib-
rium is justified by high temperature. Beta equilibrium is adopted for simplicity;
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a very rapid cooling of matter at highest temperatures can produce deviations
from beta equilibrium.

In Fig.1 we show the composition of dense, hot matter of neutron star en-
velope for T = 5 × 109 K, 8 × 109 K, and 1.2 × 1010 K. We restrict ourselves
to ρ <∼ 1013 g cm−3, because at higher densities thermal effects on matter com-
position are negligible. At T >∼ 5 × 109 K shell and paring effects, so visible
in the T = 0 approximation where they show up through jumps in the density
dependence of various quantities, are washed out by the thermal effects.

At T = 1.2× 1010 K nuclei evaporated completely for ρ <∼ 109 g cm−3. This
can be understood within the compressible liquid-drop model of nuclei, which
are treated as droplets of nuclear matter. At ρ <∼ 1011 g cm−3 these droplets
of nuclear matter have to coexist with a vapor of neutrons, protons, and α–
particles. However, coexistence of two different nucleon phases (denser – nuclear
matter liquid, less dense – vapor of nucleons and α–particles) is possible only at
T lower than critical temperature at given density, Tcrit(ρ). For ρ <∼ 109 g cm−3,
one has Tcrit(ρ) < 1.2× 1010 K.

With decreasing temperature, mass fraction of evaporated nucleons and α–
particles decreases. At T = 8×109 K, α–particles are present below 1010 g cm−3,
while free protons appear below even lower density. Free neutrons are present at
all densities, but their fraction does not exceed one percent for ρ <∼ 1011 g cm−3.

At T = 5×109 K the thermal effects are weak, and imply mainly appearance
of a small fraction of free neutrons (“neutron vapor”) below zero temperature
neutron drip density, ρND; this fraction falls below 10−5 at ρ = 1010 g cm−3. Fur-
ther decrease of T leads to disappearance of neutrons below ρND, and switching–
on of shell effects. Another important effect will be superfluid transition for neu-
trons (both inside and outside nuclei) and for protons. The composition freezes–
out and does not change with further decrease of temperature. A spherical shell
of neutron star envelope solidifies if its temperature decreases below the melting
point corresponding to local density and composition, Tm (see Sect.9).

3 Ground state of the matter in the outer crust

The ground state of matter at the densities and pressures, at which all neutrons
are bound in nuclei (i.e. below the neutron drip point) can be described by a
model formulated in the classical paper of Baym, Pethick, and Sutherland ([4],
hereafter referred to as BPS). An essential input for this model are the ground-
state masses of atomic nuclei, present in the lattice sites of a crystal. At lowest
densities, the relevant nuclei are those whose ground-state masses are determined
with high precision by the laboratory measurements. However, at higher densities
the nuclei in the ground state of matter become more and more neutron rich.
At the time, when the BPS paper was written, the last experimentally studied
nucleus, present in the ground state of dense matter, was 84Se (Z/A = 0.405).
This nucleus is unstable in laboratory, and its beta-decay half-life time is 3.1
min. The maximum density, at which this experimentally studied nucleus was
present, was found to be 8.2× 109 g cm−3.
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During last two decades significant progress has been made in the ex-
perimental nuclear physics techniques, and masses of many new neutron
rich isotopes have been measured; latest up-to-date results can be found at
http://nucleardata.
nuclear.lund.se. As we will see, the last neutron-rich nucleus studied in labora-
tory, which is expected to be present in the ground state of neutron star crust, is
78Ni, at about 1011 g cm−3 (for first experimental identification of this nuclide,
see Engelmann et al. [32])

We shall assume that matter is in its ground state (complete thermodynamic
equilibrium - cold catalyzed matter) and that it forms a perfect crystal with
a single nuclear species, (number of nucleons A, number of protons Z), at lat-
tice sites. Deviations and exceptions from this rule will be discussed later in the
present review. At given baryon density, nb, the ground state of matter cor-
responds to the minimum energy per nucleon E = E/nb (E is energy density,
which includes rest energy of constituents of matter). However, nb (or ρ = E/c2)
is not a good variable to be used in the neutron star interior because it can suffer
jumps (discontinuities) at some values of pressure. On the contrary, pressure is
strictly monotonic and continuous in the stellar interior, and increases monoton-
ically with decreasing distance from the star center. Therefore, it is convenient
to formulate our problem as that of finding the ground state of cold (T = 0)
matter at given pressure, P . This correspond to minimizing the T = 0 Gibbs
energy per nucleon, g = (E + P )/nb.

Let us start with P = 0, when g = E = E/nb. The minimum energy per
nucleon at zero pressure is reached for a body-centered-cubic (bcc) crystal lattice
of 56Fe, and is E(56Fe) = 930.4 MeV. It corresponds to ρ = 7.86 g cm−3 and
nb = 4.73× 1024 cm−3 = 4.73× 10−15 fm−3.

The bcc 56Fe crystal remains the ground state of cold matter up to pressures
∼ 1030 dyn/cm2, at which matter is compressed to ∼ 106 g cm−3 ([81], BPS).
At such a high density, matter is a plasma of nuclei and electrons which form a
nearly uniform Fermi gas. At given pressure, the values of the average electron
density, ne, and the number density of nuclei, nN , are determined from the
relations

ne = ZnN , P = Pe(ne, Z) + PL(nN , Z) , (1)

where Pe is the electron gas pressure, and PL is the “lattice” contribution re-
sulting from the Coulomb interactions (see below).

Let us divide the system into electrically neutral unit (Winger-Seine) cells
containing one nucleus. The number density of nuclei is nN = nb/A, and the
volume of each cell Vc = 1/nN . For a given A,Z nuclide, the Gibbs energy per
one unit cell is given by

Gcell(A,Z) = WN (A,Z) + WL(Z, nN ) + [Ee(ne, Z) + P ]/nN , (2)

where WN is the energy of the nucleus (including rest energy of nucleons), WL

is the lattice energy per cell (BPS), and Ee is the mean electron energy density.
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For a bcc lattice one has

WL = −0.895929
Z2e2

rc
, rc = (4πnN /3)−1/3 . (3)

The lattice contribution to pressure, (1), is thus PL = 1
3WLnN .

The Gibbs energy per nucleon g = Gcell/A is just the baryon chemical po-
tential for a given nuclid, μb(A,Z). To find the ground state at given P , one has
to minimize μb(A,Z) with respect to A and Z.

At not too high density, the lattice correction to P and μb is negligibly
small. One can then easily see the reason for matter neutronization using the
approximation μb(A,Z) � WN (A,Z)/A + Zμe/A and P � Pe. Notice that for
ρ � 106 g cm−3, electrons are ultrarelativistic and therefore μe ∝ P 1/4. With
increasing pressure, it is energetically advantageous to replace (A,Z) by (A′, Z ′)
with higher WN but smaller Z ′/A′, because increase in WN /A is more than
compensated by the decrease of the Zμe/A term.

We will follow determination of the ground state of cold dense matter by
Haensel and Pichon [39] (hereafter referred to as HP). There are some small
differences between the approximations used in HP and BPS. In HP, the values
of WN have been obtained from the atomic masses by subtracting not only the
electron rest energies, but also removing the atomic electron binding energies.
Let us mention, that atomic binding energies were kept in the BPS definition
of WN , to simulate the electron screening effects in dense matter. Also, HP
used a better approximation for the electron screening effects in dense matter.
Their expression for Ee takes into account deviations of the electron density from
uniformity, which result from the electron screening effects. They include also
the exchange term in Ee, which was neglected in BPS.

At the pressure Pi at which optimal values A,Z change into A′, Z ′, matter
undergoes a density jump, Δρ, Δnb, which to a very good approximation is
given by the formula

Δρ

ρ
∼= Δnb

nb

∼= Z

A

A′

Z ′ − 1 . (4)

The above equation results from the continuity of pressure, which in the outer
crust is to a very good approximation equal to the electron pressure, P � Pe.

Actually, sharp discontinuity in ρ and nb is a consequence of the assumed
one-component plasma model. Detailed calculations of the ground state of dense
matter by Jog and Smith [45] have shown, that the transition between the A, Z
and A′, Z ′ shells takes places through a very thin layer of a mixed lattice of these
two species. However, since the pressure interval within which the mixed phase
exists is typically ∼ 10−4Pi, the approximation of a sharp density jump is quite
a good representation of a nuclear composition of the ground state of matter.

Experimental masses of nuclei in HP were taken from nuclear masses tables
of Audi (1992, 1993, private communication) 1 Because of the pairing effect, only
1 Some of masses of unstable nuclei, given in the tables of Audi (1992,1993), were

actually semi-empirical evaluations based on the knowledge of masses of neighboring
isotopes.
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even-even nuclei are relevant for the ground state problem. For the remaining
isotopes, up to the last one stable with respect to emission of a neutron pair,
HP used theoretical masses obtained using a mass formula of Möller [59] (the
description of the formalism can be found in Möller and Nix [60]).

The equilibrium nuclides present in the cold catalyzed matter are listed in
Table 1. Only even-even nuclides are present, which results from additional bind-
ing due to nucleon pairing (see, e.g., [74]). In the fifth column of this table one
finds the maximum density at which a given nuclide is present, ρmax. The value
of the electron chemical potential, μe, at the density ρmax, is given in the sixth
column. The transition to the next nuclide has a character of a first order phase
transition and is accompanied by a density jump. The corresponding fractional
increase of density, Δρ/ρ, is shown in the last column of Table 1. The last row
above the horizontal line, dividing the table into two parts, corresponds to the
maximum density, at which the ground state of dense matter contains a nucleus
observed in laboratory. The last line of Table 1 corresponds to the neutron drip
point in the ground state of dense cold matter. This limiting density can be
determined exclusively by the theoretical calculation.

Single-particle energy levels in nuclei are discrete, with large energy gaps
between “major shells”. The local maxima in the binding energies of nuclei
with “magic numbers” Z = 28 and N = 50, 82 are associated with filling up
these major shells (see, e.g., Preston and Bhaduri [74]). The effect of the closed
proton and neutron shells on the composition of the ground state of matter is

Table 1. Nuclei in the ground state of cold dense matter. Upper part: experimental
nuclear masses. Lower part: from mass mass formula of Möller [59]. Last line corre-
sponds to the neutron drip point. After Haensel and Pichon [39].

element Z N Z/A ρmax μe Δρ/ρ

(g cm−3) (MeV) (%)
56Fe 26 30 0.4643 7.96 106 0.95 2.9
62Ni 28 34 0.4516 2.71 108 2.61 3.1
64Ni 28 36 0.4375 1.30 109 4.31 3.1
66Ni 28 38 0.4242 1.48 109 4.45 2.0
86Kr 36 50 0.4186 3.12 109 5.66 3.3
84Se 34 50 0.4048 1.10 1010 8.49 3.6
82Ge 32 50 0.3902 2.80 1010 11.44 3.9
80Zn 30 50 0.3750 5.44 1010 14.08 4.3
78Ni 28 50 0.3590 9.64 1010 16.78 4.0
126Ru 44 82 0.3492 1.29 1011 18.34 3.0
124Mo 42 82 0.3387 1.88 1011 20.56 3.2
122Zr 40 82 0.3279 2.67 1011 22.86 3.4
120Sr 38 82 0.3167 3.79 1011 25.38 3.6
118Kr 36 82 0.3051 (4.33 1011) (26.19)
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very strong; except for the 56Fe nucleus, present in the ground state at lowest
densities, all nuclides are those with a closed proton or neutron shell (Table
1). A sequence of three increasingly neutron rich isotopes of nickel Z = 28 is
followed by a sequence of N = 50 isotopes of decreasing Z, ending at the last
experimentally identified 78Ni. This last nuclid is doubly magic (N = 50, Z =
28).

At the densities 1011 g cm−3 <∼ ρ < ρND HP get a sequence of N = 82 iso-
topes, of decreasing proton number, from Z = 44 down to Z = 36, with neutron
drip at ρND = 4.3 1011 g cm−3 (Table 1). As shown by HP, results obtained
using different mass formula, that of Pearson and collaborators (Pearson, 1993,
private communication quoted in [39]) are quite similar to those obtained using
the mass formula of Möller [59].

While the persistence of the N = 50 and/or Z = 28 nuclei in the ground
state of the outer crust may be treated as an experimental fact, the strong effect
of the N = 82, dominating at 1011 g cm−3 <∼ ρ < ρND, might – in principle – be
an artifact of the extrapolation via the semiempirical mass formulae. It should
be mentioned, that some many-body calculations of the masses of very neutron
rich nuclei suggest, that the effect of the closed N = 82 shell might be much
weaker, and could be replaced by the strong effect of the closure of the Z = 40
subshell [36]. Clearly, there is a need for better understanding of shell effects in
nuclei close to the neutron drip.

4 Ground state of the matter in the inner crust
for ρ <∼ 1014 g cm−3

The existence of the inner neutron-star crust, in which very neutron rich nu-
clei are immersed in a gas of dripped neutrons, has been realized long before
the discovery of pulsars (in 1958, [41]). First approach to describe this layer
of neutron star envelope consisted in employing a semiempirical mass formula
to calculate (or rather estimate) the masses of nuclei, combined with an ex-
pression for the energy of neutron gas [41],[42],[88], [51],[6]. It is worth to be
mentioned that as early as in 1965 neutron drip density and the density at the
bottom edge of the inner crust were estimated as ρND � 3 × 1011 g cm−3 and
ρedge � 8×1013 g cm−3 [88], surprisingly close to the presently accepted values of
these densities. Further work concentrated on a consistent (unified) description
of nuclear matter inside neutron rich nuclei, and of neutron gas outside them,
using a single expression for the energy density of nuclear matter as a function
of neutron and proton densities and of their gradients [3],[18],[19], [1]. The most
ambitious early attempt to calculate the ground state of the inner crust was the
Hartree-Fock calculation of Negele and Vautherin [62]. Later work focused on the
consistent description of the bottom layers of the crust and included up-dated
treatment of both pure neutron matter and effective nucleon-nucleon interaction
[43],[66],[67],[55], [87],[28],[31],[30].

In general, calculations of the structure, composition, and equation of state
of the inner crust can be divided into three groups, according to the many-body
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technique used. Full quantum mechanical treatment can be carried out within
the Hartree-Fock approximation with an effective nucleon-nucleon interaction.
Further approximation of the many-body wave function can be done using semi-
classical Extended Thomas-Fermi (ETF) approximation. Basic quantities within
the ETF are neutron and proton densities and their spatial gradients. Finally,
investigations belonging to the third group use Compressible Liquid Drop Model
(CLDM) parameterization for the description of nuclei, with parameters derived
within a microscopic nuclear many-body theory (HF or ETF) based on an effec-
tive nucleon-nucleon interaction.

4.1 Hartree-Fock calculations
with effective nucleon-nucleon interaction

Matter is divided into unit cells, which are electrically neutral and contain one
nucleus, with cell volume Vc = 1/nN . Let us assume that a unit cell contains N
neutrons and Z protons. The nuclear effective hamiltonian for such a system of
A = N + Z nucleons is

Heff
N =

A∑
j=1

tj +
1
2

A∑
j,k=1,j �=k

veff
jk , (5)

where tj is the kinetic energy operator of j-th nucleon, while veff
jk is an operator of

effective two-body interaction between the jk nucleon pair. Usually, veff
jk contains

a component which is an effective two-body representation of the three-body
forces, important in dense nucleon medium.

Effective nuclear hamiltonian Heff
N has to reproduce - as well as possible,

and within the Hartree-Fock approximation - relevant properties of the ground
state of the many-nucleon system, and in particular - ground state energy, E0.
This last condition can be written as

〈
Φ0|Heff

N |Φ0
〉
� 〈Ψ0|HN|Ψ0〉, where Φ0, Ψ0,

and HN are Hartree- Fock wave function, real wave function, and real nuclear
Hamiltonian, respectively.

The complete hamiltonian of a unit cell is Heff
cell = Heff

N + VCoul + He, where
Vcoul and He are the components corresponding to Coulomb interaction between
charged constituents of matter (protons and electrons), and that of a uniform
electron gas, respectively. The Hartree-Fock approximation for the many-body
nucleon wave function is

ΦNZ = CNZ det
[
ϕ(p)

αi
(ξk)

]
det
[
ϕ

(n)
βj

(ζl)
]
, (6)

where ϕ
(n)
βj

(ζl) and ϕ
(p)
αi (ξk) are single-particle wave functions (orbitals) for neu-

trons (j, l = 1, ..., N) and protons (i, k = 1, ..., Z), respectively, and CNZ is
normalization constant. The space and spin coordinates of k-th proton and j-th
neutron are represented by ξk and ζl, while {αi} and {βj} are sets of quantum
numbers of occupied single-particle states for protons and neutrons, respectively.
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Further approximation, used by Negele and Vautherin [62], consisted in im-
posing the spherical symmetry. Unit cell was approximated by a sphere, and
quantum numbers of single-particle states were therefore nlj. The Hartree-Fock
equations for ϕ(p) and ϕ(n) were derived from the minimization of the HF energy
functional, at fixed volume of the unit cell, Vc,

Ecell

[
ϕ(p)

α , ϕ
(n)
β

]
= 〈ΦNZΦe

∣∣Heff
cell

∣∣ΦNZΦe〉 = minimum , (7)

where Φe is the plane-wave Slater determinant for the ultrarelativistic elec-
tron gas of constant density ne = Z/Vc. Minimization, performed at fixed
Vc, corresponds to fixed average neutron and proton densities, nn = N/Vc,
np = Z/Vc = nNZ. For details concerning actual calculational procedure the
reader is referred to the original paper of Negele and Vautherin [62].

Having calculated the HF orbitals, ϕ(n)
β , ϕ(p)

α , one determines the minimum
(ground state) value of Ecell(N,Z), filling lowest N neutron states and Z proton
states. Then, the absolute ground state configuration is found by minimizing
Ecell(N,Z) at fixed A = N + Z. Let us notice, that αZ and βN correspond
then to the “Fermi level” for protons and neutrons, respectively. In terms of
the single-nucleon orbitals, the neutron drip point corresponds to the threshold
density, at which neutron Fermi level becomes unbound, i.e., φ(n)

βN
extends over

the whole unit cell. Even at highest densities considered, no proton drip occurs.
As the matter density increases, the neutron gas density outside nuclei increases,
and the density of protons within nuclei decreases. As Negele and Vautherin [62]
find, at ρ >∼ 8 × 1013 g cm−3 the differences in energy between various local
minima of Ecell(N,Z) become so small, that it is not meaningful to proceed
with their calculational scheme to higher density.

One of the most interesting results of Negele and Vautherin [62] was predic-
tion of strong shell effect for protons: it is visualized by persistence of Z = 40
(closed proton subshell) from neutron drip point to about 3× 1012 g cm−3, and
Z = 50 (closed major proton shell) for 3× 1012 g cm−3 <∼ ρ <∼ 3× 1013 g cm−3,
Fig.2.

Alas, apart from the work of Negele and Vautherin [62], no other attempt of
a Hartree-Fock calculation of nuclear structures in the ground state of the inner
crust was carried out. This might result from an unsolved problem of correct
treatment of the boundary conditions at the unit cell edge, accompanied by
difficulties in finding absolute minimum of the Hartree-Fock energy functional.
These problems did not prevent carrying-out Hartree-Fock unit-cell calculations
of nuclear structures in hot dense matter, relevant for the equation of state in
the gravitational collapse of stellar cores [14], [91]. This seems to be due to the
fact that thermal averaging at kBT >∼ 1 MeV, as well as much less important
role of the nucleon gas outside nuclei, in the relevant case of entropy per nucleon
∼ 1−2 kB, makes the calculation less dependent on a somewhat arbitrary choice
of the boundary condition at the unit cell edge.
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Fig. 2. Numbers of protons per nucleus in the ground state of the inner crust, obtained
by various authors. Solid lines: RBP - Ravenhall et al. [76]; FPS - as quoted in [72];
DH - Douchin and Haensel [30]. Crosses - Negele and Vautherin [62].

4.2 Extended Thomas-Fermi calculations

Above neutron drip, the number of nucleons in the unit cell grows rapidly with
increasing density. At ∼ 1013 g cm−3 one has Acell ∼ 1000 [62], and implementa-
tion of the self-consistent HF scheme requires an enormous amount of work and
computer time. Large size of nuclei suggests further simplifications of the HF
model via semiclassical approximation, in which relevant quantities are repre-
sented “on the average”, with quantum fluctuations (oscillations) being averaged
out. The energy of a unit cell is a sum of a nuclear energy EN (which includes
nucleon rest energies), Coulomb energy Ecoul, and energy of electron gas, Ee.
In the Extended TF approximation (see, e.g., [79],[16]), nuclear energy of a unit
cell is expressed in terms of energy density functional EN as

EN =
∫

cell
{EN [nn(r), np(r),∇nn(r),∇np(r)]}d3r

+
∫

cell

[
mnc

2nn(r) + mpc
2np(r)

]
d3r . (8)

The nuclear energy density functional has a non-local character, as it depends
on the density gradients. For the ETF approximation to be valid, characteristic
length over which density nn or np changes significantly has to be much larger
than the mean internucleon distance. One can then restrict to keeping only
quadratic gradient terms in EN. To a very good approximation, electron gas is
uniform, with ne = Z/Vc, and therefore Coulomb energy of a unit cell is given
by

ECoul =
1
2

∫
cell

e [np(r)− ne]φ(r)d3r , (9)

where φ(r) is the electrostatic potential, to be calculated from the Poisons equa-
tion,

∇2φ(r) = −4πe [np(r)− ne] , (10)
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and e is the elementary charge. To calculate the ground state at a given nb, one
has to find nn(r), np(r), which minimize Ecell/Vc, under the constraints

Vcnb =
∫

cell
[nn(r) + np(r)] d3r ,

∫
cell

[np(r)− ne] d3r = 0 . (11)

The unit cell is approximated by a sphere of radius rc = (3Vc/4π)1/3, which
simplifies the problem due to spherical symmetry. The boundary conditions are
such that far from the nuclear surface (i.e., from the neutron gas–nuclear matter
interface) nucleon densities are uniform. This requires that nuclear radius be
significantly smaller than rc. The ETF method was first applied to the calcu-
lation of the structure of the inner crust by Buchler and Barkat ([18], see also
[19] and [2]). In the 1980s the main effort was concentrated on the case of dense
and hot matter, relevant for the gravitational collapse of stellar cores and for
modeling of type II supernova explosions An exception from this rule is the
paper of Ogasawara and Sato [63], who devote Sect.3.1 of their paper to the case
of cold catalyzed matter. Their calculational scheme was similar to that used by
Barkat et al. [2]. However, Ogasawara and Sato used different models of poten-
tial energy of asymmetric nuclear matter. They obtained neutron drip density
3 − 4 × 1011 g cm−3 and the values of Z = 35 − 45, higher than those of [2];
this difference resulted from different nuclear energy functional models. Results
of Ogasawara and Sato were in good agreement with HF results of Negele and
Vautherin [62].

Significant progress in the 1980s was achieved in the calculations of the prop-
erties of asymmetric nuclear matter and pure neutron matter with realistic bare
nucleon-nucleon interactions (see, [33],[90]). On the other hand, calculations
using the HF method and its semi-classical simplifications, with new models of
effective nucleon-nucleon interaction, reached a high degree of precision in repro-
ducing the properties of atomic nuclei. The ETF calculation in the 1990s focused
on detailed investigation of the possibility of appearance of non-spherical nuclei
in the densest layer of the crust, which will be described in detail in Sect.5.
Oyamatsu [67] studied the ground state of the inner crust within the ETF ap-
proximation, with four different energy density functionals EN. These functionals
were constructed so as to reproduce gross properties of laboratory nuclei, and
to be consistent with the equation of state of pure neutron matter obtained by
Friedman and Pandharipande [33] for realistic bare nucleon-nucleon interaction.
Oyamatsu performed explicit minimization of the TF energy functional within a
family of parameterized nn and np density profiles. Between neutron drip, which
takes place at 4×1011 g cm−3, and 1014 g cm−3, Oyamatsu obtained for all four
of his models Z � 40, in good agreement with HF calculations of Negele and
Vautherin [62].

Simultaneously with application of the relativistic Brueckner-Hartree-Fock
(RBHF) approach to neutron star matter at supranuclear densities, semi-
classical ETF approximation based on the RBHF model was applied for the
calculation of the properties of the inner crust. Starting from the RBHF re-
sults for bulk asymmetric nuclear matter, Sumiyoshi et al. [87] applied the ETF
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scheme of Oyamatsu [67], with his parameterization of the nucleon density pro-
files. The quadratic gradient term in the energy density functional was deter-
mined by fitting the properties of terrestrial nuclei. They found neutron drip
at 2.4 × 1011 g cm−3. Their values of Z in the inner crust were systematically
lower than those obtained in older work, with Z � 35 near neutron drip, de-
creasing down to about 20 at ρ � 1014 g cm−3. This may be attributed to the
fact that Coulomb energy of nuclei in their model is relatively large, due to
smaller nuclear radii. It should be mentioned that their RBHF value of satura-
tion density for symmetric nuclear matter, 0.185 fm−3, was significantly larger
than the experimental value of 0.16 fm−3 and this may explain compactness of
their nuclei.

Relativistic Hartree approximation of the ground-state energy functional, cal-
culated in the non-linear relativistic mean field model of dense nucleon matter,
can be simplified using the relativistic extended Thomas-Fermi (RETF) approx-
imation proposed by Centelles et al. [24],[25]. In the RETF approximation, one
gets EN functional containing terms quadratic in ∇nn, ∇np, which are com-
pletely determined within the model. The RETF model was applied by Cheng
et al. [28] for the calculations of the structure of the ground state of the inner
crust, starting from the Boguta and Bodmer [13] nonlinear σ − ω − ρ model
Lagrangian. Three sets of the Lagrangian parameters were used in actual calcu-
lations. Cheng et al. [28] solved the Euler-Lagrange equations for nn(r), np(r) in
the spherical unit cell exactly. They did not give explicitly values of Z as func-
tion of the matter density. However, analysis of their figures and tables leads
to conclusion that, similarly as Sumiyoshi et al. [87], they get nuclei which are
relatively small, and their values of Z are significantly lower than those obtained
in non-relativistic calculations.

4.3 Compressible liquid drop model

The nature of the HF and ETF calculations does not permit to study separate
physical contributions and effects, whose interplay leads to a particular structure
of the inner crust. The compressible liquid drop model (CLDM) enables one to
separate various terms in Ecell, so that their role and mutual interaction can be
identified.

There are also practical advantages of using the CLDM. On the one hand,
it can be considered as suitable and economical parameterization of results of
microscopic calculations of the HF or ETF type. On the other hand, CLDM
model avoids technical complications related to the choice of boundary condi-
tions at the edge of the unit cell, plaguing HF approach at highest inner crust
densities. Finally, CLDM description allows for thermodynamically consistent
and systematic treatment of bulk and finite-size effects, and is particularly con-
venient for studying phase transitions between different phases of neutron star
matter (see Sect.5). In particular, CLDM treats two major effects of the outer
neutron gas on nuclei: 1) decrease of the surface tension with growing density,
due to increasing similarity of nucleon matter inside and outside nuclei; 2) com-
pression of nuclear matter within nuclei due to the pressure of outer neutron gas.
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However, we should stress that all these attractive features of the CLDM model
are valid only when finite-size contributions were calculated, in a microscopic
HF or ETF approach, from the same effective nucleon hamiltonian as that used
for the calculation of the bulk (volume) terms. In particular, only in such a case
decrease of the surface tension due to the presence of the outer neutron gas is
treated in a correct way.

Within the CLDM, one divides nuclear contribution EN (which excludes
Coulomb interactions) to Ecell into bulk, EN,bulk and surface, EN,surf , terms.
Coulomb contributions to the energy of a unit cell are denoted by ECoul. Elec-
trons are assumed to form an uniform Fermi gas, and yield the rest and kinetic
energy contribution, denoted by Ee. Total energy of a unit cell is therefore given
by

Ecell = EN,bulk + EN,surf + ECoul + Ee . (12)

Here, EN,bulk is the bulk contribution of nucleons, which does not depend on the
size and shape of nuclear structures. However, both EN,surf and ECoul, which
vanish for uniform npe matter, do depend on the size and shape of nuclear
structures, formed by denser nuclear matter and the less dense neutron gas.
From the point of view of thermodynamics, nucleons are distributed between

Fig. 3. Proton and neutron number density distributions within a spherical unit cell
in the inner neutron star crust. Solid lines are actual density profiles, dashed lines
correspond to those of the Compressible Liquid Drop Model. Rn, Rp are equivalent
neutron and proton radii, denoted in the text as rn, rp.

three subsystems: denser nucleon fluid, which will be labeled by “i”, less dense
neutron fluid, labeled by “o”, and nuclear surface (i.e., “i-o” phase interface),
labeled by “s”. One requires mechanical and chemical equilibrium between these
subsystems. Far from the nuclear surface, nucleon densities are constant, and
equal to nn,i, np,i in the denser “i” phase and nn,o in the less dense neutron
gas. The definition of the surface term is subject to an ambiguity. In the case
of spherical nuclei in the inner crust it is convenient to identify it with a sphere
of reference proton radius rp, such that 4π

3 r3
pnp,i is equal to the actual Z. Such

a definition is convenient because of the presence of the Coulomb term in Ecell,
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which involves solely proton density distribution. Similarly, neutron radius rn is
defined by 4π

3 [r3
n(nn,i−nn,o)+r3

cnn,o] = Ncell (see Fig.3). In view of a significant
neutron excess, the interface includes neutron skin, of thickness sn = rn − rp,
formed by neutrons adsorbed onto the nuclear matter surface.

The nuclear bulk energy of a cell is

EN,bulk = Vc [wEN,i + (1− w)En,o] , (13)

where the volume of the cell Vc = 4πr3
p/3, EN,i is energy density of nuclear matter

far from nuclear surface, and En,o is the corresponding quantity for outer neutron
gas. The volume fraction occupied by the phase “i” is w = Vp/Vc = (rp/rc)3.

The nuclear surface energy term, EN,surf , gives the contribution of the inter-
face between neutron gas and nuclear matter; it includes contribution of neutron
skin ([52],[72],[54]),

EN,surf = Aσ + Nsμn,s , (14)

where σ is the surface thermodynamic potential per unit area, A is the area of
nuclear surface (in the case of spherical nuclei A = 4πr2

p), Ns is the number
of neutrons in neutron skin, and μn,s is the chemical potential of the neutrons
adsorbed onto reference proton surface. In the simplest approximation, in which
curvature contributions to EN,surf , proportional to A/rp, are neglected, σ is ap-
proximated by the surface tension σs, and Ns � (nn,i − nn,o)snA. More precise
expression for EN,surf may be obtained including curvature corrections, which
take into account the curvature of the nuclear surface ([54],[29]). In view of the
possibility of nuclear structures with infinite volumes (see Sect.5) it is conve-
nient to introduce contribution of neutrons in neutron skin to the total (overall)
nucleon density, ns = Ns/Vc [54].

In order to calculate ECoul, one uses the Winger-Seine approximation. Ne-
glecting diffuseness of the proton distribution one gets

ECoul =
16
15

π2 (np,ie)
2
r5
pf3(w) , f3(w) =

(
1− 3

2
w1/3 +

1
2
w

)
. (15)

At T = 0, equilibrium can be determined by minimizing total energy den-
sity, E = Ecell/Vc, at fixed value of nb. The quantity E is a function of seven
independent variables. A convenient set of variables is: nn,i, np,i, ns, nn,o, rp,
rn, rc; in this way all independent variables will be finite even in the case of
infinite nuclear structures, considered in Sect. 5. Imposing fixed nb, and requir-
ing charge neutrality of the cell, we reduce the number of independent variables
to five. Therefore, there will be five conditions of equilibrium resulting from the
stationarity of E with respect to variations of thermodynamic variables. Each of
these conditions has well defined physical meaning. First condition requires that
the neutron chemical potential in the nucleus and in the outer neutron gas be the
same. Neglecting curvature corrections, it implies equality of neutron chemical
potentials in the bulk phases of nucleon matter, μbulk

n,i = μbulk
n,o . Second equation

results from minimization with respect to the number of protons, and yields the
beta equilibrium condition between neutrons, protons, and electrons. Neglecting
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curvature corrections, it reads

μbulk
n,i − μbulk

p,i − μe =
8π
5
e2np,ir

2
pf3(w) . (16)

We also need a condition on the number of surface neutrons. It results from
the requirement of stationarity with respect to transfer of a neutron from the
nucleus interior to the surface, all other particle numbers being fixed. Neglect-
ing curvature corrections, this condition implies that the chemical potential
of surface neutrons is equal to the bulk chemical potentials in both phases,
μn,s = μbulk

n,i = μbulk
n,o .

To these three conditions, expressing chemical equilibrium within the sys-
tem, we have to add two equations corresponding to mechanical equilibrium.
Condition number four results from the requirement of stationarity with respect
to change of rp, and expresses the equalities of pressures inside and outside the
nucleus. Neglecting curvature corrections, condition number four reads

P bulk
i − P bulk

o =
2σs

rp
− 4π

15
e2n2

p,ir
2
p(1− w) , (17)

where P bulk
j = n2

j ∂(Ebulk
j /nj)/∂nj.

The last fifth equation determines the equilibrium size of the cell. It results
from the condition of stationarity with respect to the variation spatial scale of
the cell, while w and all densities including ns are kept constant. Notice, that
because w is kept constant, this condition involves only the finite-size terms in
Ecell. Within our approximation (no curvature corrections), the last condition
can be written as

EN,surf = 2ECoul . (18)

This the “virial theorem” of the simplified Compressible Liquid Drop Model
with no curvature corrections (Baym, Bethe, and Pethick [3], hereafter referred
to as BBP), which enables one to express rp in terms of remaining variables.
Generalization of “virial theorem” to the case of nonstandard nuclear shapes
will be discussed in Sect.5.

Let us write an explicit expression for nuclear component of the energy den-
sity, neglecting for simplicity curvature corrections in EN,surf . Both surface ten-
sion, σ � σs, and thickness of neutron skin, sn = rn − rp, are calculated under
the condition of thermodynamic and mechanical equilibrium of the semi-infinite
“i” and “o” phases, separated by a plane interface. Therefore, σ and sn depend
on only one thermodynamic variable, e.g., proton fraction in the bulk “i” phase,
xi = np,i/ni, where ni = nn,i +np,i. The formula for the energy density EN reads
then

EN = wEN,i + (1− w) En,o +
3w
rp

[σs + (nn,i − nn,o)snμn] . (19)

Let us remind, that in equilibrium chemical potential of neutrons adsorbed onto
nuclear surface is equal to the common value of μn in both bulk phases. Possi-
bility of non-spherical shapes of nuclei will be considered in the next Section.
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Historically, first CLDM calculations of the structure of the inner crust were
performed in the classical paper of Baym, Bethe, and Pethick [3](BBP). The
BBP paper formulated the foundations of the subsequent CLDM calculations of
the structure of the inner neutron star crust. Unfortunately, BBP used oversim-
plified estimates of the reduction of σ with increasing density, based on dimen-
sional arguments; this resulted in rapid increase of Z with increasing density,
corrected in subsequent calculations [76]. Most recent CLDM calculation of the
ground state structure of the inner crust were performed by Lorenz [54] and
by Douchin and Haensel ([29], [31],[30]). These calculations were based of effec-
tive nucleon-nucleon interactions, which were particularly suitable for strongly
asymmetric nuclear systems. Lorenz used FPS model (Friedman Pandharipande
Skyrme [70]), consistent with results of many-body calculations of dense asym-
metric nuclear matter with realistic bare nucleon-nucleon interaction and a phe-
nomenological three-nucleon force, performed by Friedman and Pandharipande
[33]. Douchin and Haensel used the SLy (Skyrme Lyon, [26],[27]) effective forces,
adjusted to the properties of neutron-rich nuclei, and adjusted also, at ρ > ρ0,
to the results of many-body dense asymmetric nuclear matter calculations of
Wiringa et al. [90], which were based on bare two-nucleon interaction AV14 and
phenomenological UVII three-nucleon interaction.

Fig. 4. Radius of spherical unit (Winger-Seine) cell, rc, the proton radius of spherical
nuclei, rp, and fraction of volume filled by protons, w (in percent), versus matter density
ρ. Based on Douchin and Haensel [30].

In what follows, we will illustrate CLDM results for spherical nuclei by those
of Douchin and Haensel [30]. Geometrical parameters characterizing nuclei in
the inner crust, up to 1014 g cm−3, are shown in Fig. 4. Here, w is the fraction
of volume occupied by nuclear matter (with our definition of nuclear matter
volume equal to that occupied by protons).

More detailed information on neutron-rich nuclei, present in the ground state
of the inner crust at ρ < 1014 g cm−3, can be found in Fig.5. Number of nucleons
in a nucleus, A, grows monotonically, and reaches about 300 at 1014 g cm−3,
where Acell � 1000. However, the number of protons changes rather weakly,
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Fig. 5. Mass number of spherical nuclei, A, and their proton number, Z, versus av-
erage matter density ρ. Dotted line corresponds to number of nucleons after deducing
neutrons belonging to neutron skin (Nsurf corresponds to Ns in the text). Based on
Douchin and Haensel [30].

increasing slightly from Z � 40 near neutron drip to somewhat above forty
at 1013 g cm−3, and then decreasing to Z � 40 at 1014 g cm−3. Results for
Z of spherical nuclei are quite similar to those obtained in ([67],[76]), but are
somewhat higher than those obtained using a relativistic mean-field model in
([87],[28]). An interesting quantity is the number of neutrons forming neutron
skin, Ns. As one can see from Fig.5, for ρ >∼ 1

3ρ0 the value of Ns decreases with
increasing density; this is due to the fact that nn,i and nn,o become more and
more alike.

For ρ � 1014 g cm−3, spherical nuclei are very heavy, A � 300, and doubts
concerning their stability with respect to deformation and fission arise.

Originally, the Bohr-Wheeler condition for fission has been derived for iso-
lated nuclei, which were treated as drops of incompressible, charged nuclear mat-
ter (see, e.g., [74]). Let us denote the Coulomb and surface energy of a spherical
nucleus in vacuum by E

(0)
Coul and E

(0)
surf , respectively. The Bohr-Wheeler condi-

tions states that for E
(0)
Coul ≥ 2E(0)

surf a spherical nucleus is unstable with respect
to small quadrupolar deformations, and is therefore expected to deform spon-
taneously and fission into smaller drops (fragments). In the case of nuclei in
the neutron-star crust one has to include corrections to the Bohr-Wheeler con-
dition, resulting from the presence of electron background and of other nuclei.
Such corrections were calculated by Brandt (1985; quoted in [72]). The leading
corrections were found to be of the order of (rp/rc)3. This is to be contrasted
with corrections in ECoul, where the leading correction term is linear in rp/rc
[see (15)]. Keeping only leading correction to Coulomb energy, one can rewrite
the equilibrium condition, (18), in an approximate form

Esurf � 2E(0)
Coul

(
1− 3

2
rp

rc

)
. (20)
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Within the linear approximation, E(0)
Coul is the Coulomb energy of the the nu-

cleus itself (self-energy). The quantity E
(0)
Coul is larger than the actual ECoul,

which is equal to the half of Esurf . As the density increases, E(0)
Coul can become

sufficiently large for the Bohr-Wheeler condition to be satisfied. Within linear
approximation, this would happen for rp/rc > 1/2, i.e., when nuclei fill more
than (1/2)3 = 1/8 of space. As one sees from Fig.4, this does not happen for
spherical nuclei at ρ < 1014 g cm−3 for the particular Douchin and Haensel [30]
model of the inner crust. However, at 1014 g cm−3 the value of w = (rp/rc)3 is
rather close to the critical value of 1/8.

5 Ground state of the matter
in the bottom layers of the crust

For ρ <∼ 1014 g cm−3 ground state of the inner crust contains spherical nuclei;
as we will see in the present section, such a structure is stable with respect to
transition into different nuclear shapes, or into a uniform npe matter. Of course,
as long as rp 	 rc, we expect nuclei in the ground state of dense cold matter to be
spherical (or quasispherical). This is particularly clear within the CLDM, where
for rp 	 rc it is the spherical shape which minimizes the shape-dependent (finite-
size) contribution EN,surf + ECoul. However, the situation at ρ >∼ 1014 g cm−3,
where rp/rc >∼ 0.5, is far from being obvious.

In the present section we will study, in the ground state approximation,
the structure and equation of state of the inner crust at ρ >∼ 1014 g cm−3. In
particular, we will discuss possible unusual (exotic) shapes of nuclei present in
the bottom layers of the crust. We will also study transition between the crust
and the liquid neutron star core.

5.1 Unusual nuclear shapes

Long ago it has been pointed out that when the fraction of volume occupied by
nuclear matter exceeds 50%, nuclei will turn “inside-out”, and spherical bubbles
of neutron gas in nuclear matter will become energetically preferred (BBP). 2

Generally, in the process of minimization of energy, nuclear shape has to be
treated as a thermodynamic variable: the actual shape of nuclei in the ground
state of the bottom layer of the inner crust has to correspond to the minimum
of E at a given nb. Historically, first studies along these lines were connected
with structure of matter in gravitational collapse of massive stellar cores. Calcu-
lations performed within the CLDM for dense hot matter, with T > 1010 K and
entropy per nucleon 1− 2 kB indicated, that before the transition into uniform
plasma, matter undergoes a series of phase transitions, accompanied by a change
of nuclear shape [77]. These authors considered a basic set of spherical, cylin-
drical, and planar geometries, corresponding to dimensionality d = 3, 2, 1. For
2 This result of BBP was obtained within the Liquid Drop Model, neglecting curvature

contribution to the surface thermodynamical potential.
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Fig. 6. Unit cells for a set of nuclear shapes (spheres, rods, plates) in the inner crust.
The radius of the unit cell is denoted by Rc (notation in the text: rc). Hatched regions
correspond to nuclear matter, blank to neutron gas. In the case of the “bubbular phase”
(tubes, spherical bubbles) one has to exchange the roles of the blank and hatched
regions.

each dimensionality, they restricted to simplest shapes with a single curvature
radius (i.e., maximal symmetry). So, for d = 3 Ravenhall et al. [77] considered
spherical nuclei in nucleon gas and spherical bubbles in denser nuclear matter,
referred to as 3N and 3B, respectively. In the case of d = 2, nuclear structures
were cylindrical nuclei (rods, 2N), and cylindrical holes in nuclear matter, filled
with nucleon gas (tubes, 2B). Finally, for d = 1 they considered parallel plates of
nuclear matter separated by nucleon gas; in this case “bubbular” and “nuclear”
phases coincide, and were denoted by 1N. 3 Ravenhall et al. [77] found a se-
quence of phase transitions 3N −→ 2N −→ 1N −→ 2B −→ 3B, which preceded
transition into uniform plasma. These transitions were accompanied by increase
of the fraction of volume occupied by denser (nuclear matter) phase.

One of the virtues of the CLDM is its flexibility as far as the shape of nuclei
is concerned. The terms EN,bulk and Ee are shape independent. The surface and
Coulomb terms do depend on the shape of nuclei, but can easily be calculated
if one neglects the curvature corrections. In what follows we will describe the
formulae for EN,surf and ECoul within this simple approximation. For the sake of
completeness, we will include also previously considered case of spherical nuclei
(phase 3N). Using elementary considerations, one may show that the general
formula for the surface energy contribution is

EN,surf =
wd

rp
[(nn,i − nn,o)μnsn + σs] , (21)

3 For obvious reasons, culinary terms are also frequently used to denote various phases.
So, 3B, 2N, and 1N are referred to as swiss cheese, spaghetti, and lasagna phases,
respectively.
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where dimensionality the d = 3 for 3N, 3B phases, d = 2 for the 2N, 2B phases,
and d = 1 for the 1N phase. The filling factor w is given by a simple formula
w = (rp/rc)d.

The case of the Coulomb contribution is more complicated, but the result can
be also represented by a universal expression, obtained in [77]. The calculation is
based on the Winger-Seine approximation. The unit cells for the 3N, 2N and 1N
phases are visualized in Fig. 6. In the case of rods, the unit cell is approximated
by a cylinder, coaxial with the rod, of radius rc. The number of rods per unit
area of the plane perpendicular to rods is 1/(πrc)2. In the case of plates, the
boundary of the unit cell consists of two planes parallel to the nuclear matter
slab, at distance rc from the slab symmetry plane. For the phases of spherical
nuclei (3N), nuclear matter rods (2N) and plates (1N) one obtains then

EC =
4π
5

(np,ierp)
2
fd(w) , (22)

where

fd(w) =
5

(d + 2)

[
1

d− 2

(
1− 1

2
dw1−2/d

)
+

1
2
w

]
. (23)

In the case of d = 2 (rods) one has to take the limit of d −→ 2, in order to get
a more familiar expression

f2(w) =
5
8

(
ln

1
w
− 1 + w

)
. (24)

These formulae hold also in the case of the neutron gas tubes (2B) and neutron
gas bubbles (3B) but one has then to replace w by 1− w. Of course, rp is then
the radius of the tubes or the bubbles.

The virial theorem, which states that in equilibrium EN,surf = 2ECoul, remains
valid for any phase. It is a consequence of scaling of the Coulomb and surface
energy density with respect to the value of rp (EN,surf ∝ r−1

p , EC ∝ r2
p), and

simultaneous invariance in the case of d = 2 and d = 1 with respect to the change
of the scale in the remaining one and two dimensions. In the case of bubbular
phases (bubbles, tubes), one has to replace w by 1− w.

Beautiful simplicity of the formulae is lost when one introduces “curvature
corrections” to the finite-size terms. In the case of the surface terms, they result
from the fact that the energy of the nuclear surface depends on its curvature,
which in the case of the five nuclear shapes under consideration is given by
κ = (d− 1)/rp for the phases 3N, 2N and κ = −(d− 1)/rp for the 3B, 2B ones,
respectively. Surface thermodynamic potential, calculated including lowest order
curvature correction, is then given by σ = σs + κσc. It should be stressed, that
in contrast to surface tension σs, the curvature tension σc does depend on the
choice of the “reference surface”, which in our case is taken at r = rp (see, e.g.,
[48], [30]). In the case of the Coulomb energy, curvature corrections appear when
we include the diffuseness of the proton surface. These corrections were studied
in detail by Lorenz [54](see also [29]).
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Fig. 7. Energy density of a given phase of inner-crust matter minus that of the bulk
two-phase nuclear matter-neutron gas-electron gas system, as a function of the average
baryon density nb. Label “uniform” corresponds to the case of the uniform npe matter.
Calculations performed for the FPS and SkM effective nucleon-nucleon interactions.
After [55].

First detailed calculations of the structure of the inner crust at
ρ >∼ 1014 g cm−3, performed within the CLDM by Lorenz et al. [55], indicated
that the presence or absence of unusual nuclear shapes before transition to uni-
form npe matter depends on the assumed model of effective nucleon-nucleon
interaction. For the FPS model of effective N-N interaction, they found a se-
quence of 3N −→ 2N −→ 1N −→ 2B −→ 3B phase transition, which started
at 0.064 fm−3 � 1

3n0 (1.1 × 1014 g cm−3), and ended at nedge = 0.096 fm−3

(ρedge = 1.6 × 1014 g cm−3) with a transition from the 3B phase to uni-
form npe matter. All phase transitions were very weakly first-order, with rel-
ative density jump below 1%. It should be stressed that in the relevant den-
sity region the differences between E(nb) for various shapes is very small and
amounts typically to less than 0.001 MeV/fm3. This is to be compared with
E(crust; shape)− E(uniform) � 0.01− 0.02 MeV/fm3 (see Fig.7).

As Lorenz et al. [55] have shown, the very presence of unusual shapes depends
on the assumed model of veff

NN. In the case of the SkM force (used by Bonche
and Vautherin [14],[15] in their dense and hot matter studies) spherical nuclei
were energetically preferred down to the bottom edge of the crust, found at
significantly lower density nedge = 0.074 fm−3 (ρedge = 1.2× 1014 g cm−3).

Further calculations confirmed this unfortunate ambiguity, resulting from de-
pendence on veff

NN. Using parameterized density profiles in the ETF energy density
functional, Oyamatsu [67] found complete sequence of phase transitions in the
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density range 1.0− 1.5× 1014 g cm−3. Similar sequence of phase transitions was
found by Sumiyoshi et al. [87], with however a much narrower range of existence
of unusual nuclear shapes, 0.050−0.058 fm−3 (0.83−0.97×1014 g cm−3), before
final transition to uniform npe matter. On the contrary, Cheng et al. [28], using
unconstrained relativistic ETF approach, found that spherical nuclei persist in
the ground state of the crust down to nedge, which depending on the parameters
of their relativistic σ−ω−ρ Lagrangian ranged from 0.058 fm−3 to 0.073 fm−3.
Similarly, calculations performed by Douchin and Haensel [30] with SLy4 effec-
tive N-N force indicated absence of unusual nuclear shapes. They found transi-
tion to uniform npe matter at nedge = 0.078 fm−3 (ρedge = 1.3× 1014 g cm−3).

While the presence of unusual nuclear shapes for ρ <∼ ρedge depends on effec-
tive nuclear interaction model used, some general qualitative statements, based
on existing calculations, can still be made. The very phenomenon of phase tran-
sitions between various shapes results from the interplay of three quantities:
finite-size (surface and Coulomb) term in Ecell, the dominating bulk energy term,
and the volume fraction of the denser nucleon fluid, w. If finite-size terms are
small, then ρedge is reached at relatively low value of w. However, unusual (non-
spherical) shapes become energetically advantageous only at sufficiently large
value of w. Therefore, small surface tension may prohibit the appearance of un-
usual shapes before ρedge is reached (this is the case of the SLy4 and SkM forces.
It should be stressed, however, that phase transitions themselves result from
very small energy differences (see Fig. 7) of energy densities: finite-size terms in
the relevant density range are very small compared to Ebulk = EN,bulk + Ee.

In the case of the CLDM, one should stress very important role of the cur-
vature term in EN,surf , which should therefore be included in any CLDM calcu-
lations of the crust-liquid core transition. As we already mentioned, introducing
curvature corrections in the finite-size terms complicates the analysis of the un-
usual shape problem. In the absence of the curvature correction to EN,surf , it
is possible to show that the 3N−→2N transition has to occur at w = 0.2 [66].
However, in the presence of the curvature correction the 3N phase can persist
at larger values of w.

In actual CLDM or ETF calculations, the change of nuclear shape in the
ground state of the inner crust is accompanied by a very small (less than one
percent) density jump; it has therefore the character of a very weak first-order
phase transition [55],[67],[87]. The equation of state in the region in which the
nuclear shape transitions occur is obtained using Maxwell construction at the
transition pressures.

The CLDM model is par excellence classical. Also, the ETF scheme is a
semiclassical approximation to a quantum-mechanical many-body problem. As
the differences of energy densities between phases with different nuclear shapes
are very small, one may worry about possible importance of neglected quantum
effects. In the case of terrestrial nuclear physics, there exists a systematic pro-
cedure of adding quantum (shell) corrections to the smooth liquid drop model
energies of nuclei (Strutinsky method, see, e.g., [74]). Energy correction, result-
ing from the quantum shell effects for protons, and for various nuclear shapes,
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has been calculated by Oyamatsu and Yamada [68]. They found, that with in-
clusion of proton shell effects changes of nuclear shapes occur at higher densities
than those obtained using semiclassical ETF calculation.

Another quantum effect neglected in the CLD or ETF model is pairing of
nucleons. However, because of large numbers of nucleons in a unit cell, pairing
contribution to the energy is negligible. Larger effects, which clearly need a
careful investigation, may result from using the Winger-Seine approximation at
ρ � 1014 g cm−3.

5.2 Reaching the bottom edge of the crust from the denser side

The method of the determination of the bottom edge of the crust, based on the
CLDM of nuclei, requires a very high precision of the calculation of the finite-size
contribution term, EN,surf +Ecoul, in Ecell. One has to construct a CLDM model
of the ground state of the inner crust, and then find the density of the crust–liquid
core transition from the condition of the thermodynamic phase equilibrium. This
method requires that one uses the same nuclear hamiltonian for the crust and for
the liquid core phase. It requires also very precise many–body method for the
description of nuclear structures within the bottom layers of the crust, which
is a rather difficult task (see Fig. 7). Luckily enough, calculations described
in the previous subsection show that the crust–liquid core phase transition is
very weakly first–order (i.e., the relative density jump at the crust-liquid core
interface is very small). Therefore, one can locate the crust-core interface using
completely different method, which is based on a well known technique used in
the theory of phase transitions in condensed matter. This can be an independent
test of precision of the CLDM calculation of ρedge, described in the previous
subsection. We will locate the edge of the crust by checking the stability of the
uniform npe matter, starting from the higher density side where we know that
the homogeneous phase is indeed stable with respect to formation of spatial
inhomogeneities (BBP, Pethick et al. [71]). By lowering the density, we will
eventually find the threshold density, at which the uniform npe matter becomes
unstable for the first time. As we will see, this threshold density gives a very
good approximation of the actual density of the crust edge density, ρedge.

At a given nb, the ground state of a homogeneous npe matter corresponds
to the minimum of the energy density E(nn, np, ne) = E0, under the constraints
of fixed baryon density and electric charge neutrality, np + nn = nb and ne =
np, respectively. This implies beta equilibrium between the matter constituents
and ensures vanishing of the first variation of E due to small perturbations
δnj(r) (where j = n, p, e) of the equilibrium solution (under the constraints of
constant total nucleon number and global charge neutrality within the volume
V of the system). However, this does not guarantee the stability of the spatially
homogeneous state of the npe matter, which requires that the second variation
of E (quadratic in δnj) be positive.

The expression for the energy functional of slightly inhomogeneous neutron-
star matter can be calculated using the semi-classical ETF treatment of the
kinetic and the spin-gradient terms in nucleon contribution to E [16]. Assuming
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that the spatial gradients are small, we keep only the quadratic gradient terms
in the ETF expressions. This approximation is justified by the fact that char-
acteristic wavelengths of periodic perturbations will turn out to be much larger
than the internucleon distance. With these approximations, the change of the
energy (per unit volume) implied by the density perturbations can be expressed,
keeping only second order terms (BBP, [71]),

E − E0 =
1
2

∫
dq

(2π)3
∑
j,k

Fjk(q)δnj(q)δnk(q)∗ , (25)

where we used the Fourier representation

δnj(r) =
∫

dq
(2π)3

δnj(q)eiqr . (26)

The Hermitian Fik(q) matrix determines the stability of the uniform state of
equilibrium of the npe matter with respect to the spatially periodic pertur-
bations of wavevector q. Due to the isotropy of the homogeneous equilibrium
state of the npe matter, Fik depends only on |q| = q. The matrix elements Fik

are calculated from the second variation of the microscopic energy functional
E [nn, np, ne,∇nn,∇np,∇ne] (BBP, [71]).

The condition for the Fij matrix to be positive-definite is equivalent to the
requirement that the determinant of the Fij matrix be positive (Pethick et al.
1995). At each density nb, one has thus to check whether det[Fij(q)] > 0. Let us
start with some nb, at which det[Fij(q)] > 0 for any q. By decreasing nb, we find
eventually a wavenumber Q at which stability condition is violated for the first
time; this happens at some density nQ. For nb < nQ the homogeneous state is
no longer the ground state of the npe matter since it is unstable with respect to
small periodic density modulations.

Calculations performed with several effective nuclear Hamiltonians indicate
that nQ � nedge, within a percent or better [71],[30]. For the ETF approxima-
tion to be correct, the value of the characteristic wavelength of critical density
perturbations, λQ = 2π/Q, must be significantly larger than the mean internu-
cleon distance. The critical wavenumbers Q are typically ∼ 0.3 fm−1. Therefore,
despite a small proton fraction (about 3–4% at nQ), λQ ∼ 20 fm is typically four
times higher than the mean distance between protons rpp = (4πnp/3)−1/3; for
neutrons this ratio is typically about eight.

The instability at nQ signals a phase transition with a loss of translational
symmetry of the npe matter, and appearance of nuclear structures. The agree-
ment of nQ and nedge is a good test of the precision of determination of nedge.
It implies also that the spherical unit cell approximation for 3N or 3B phases
is valid even close to ρedge. This agreement means also that restriction to linear
curvature correction in σ within the CLDM is sufficiently precise. Finally, it is a
convincing argument for the validity of the CLDM at very large neutron excess.
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6 Formation of accreted crust and crustal
non-equilibrium processes

While a newly born neutron star is clearly made of hot matter in nuclear equilib-
rium, its subsequent evolution can lead to formation of regions in which matter is
far from it. Such a situation may take place in the neutron star crust, where the
reshuffling of nucleons necessary for the formation of large nuclei characteristic of
cold catalyzed matter may be prohibited due to the high Coulomb barriers. This
is the case of an old accreting neutron star. For the accretion rate of the order
of 10−10M�/y typical temperature in the neutron star interior does not exceed
108 K [34]. Let us consider standard scenario connected with phenomenon of
X-ray bursts. Explosive burning of the helium layer leads to formation of matter
consisting mainly of 56Ni, which transforms into 56Fe. The growing layer of pro-
cessed accreted matter pushes down the original crust. The original catalyzed
(ground state) outer crust, which consisted of nuclei embedded in electron gas,
is replaced by a new, non-catalyzed one in ∼ 105 y. In view of low temperature
(T <∼ 108K) the only processes which can take place in crystallized matter when
it sinks inwards are: electron captures, neutron emission or absorption and, at
sufficiently high density, pycnonuclear fusion. Detailed study of the processes
taking place in the crust of an accreting neutron star has been done by Sato
[83], who considered several scenarios with different initial composition of mat-
ter, and by Haensel and Zdunik [37] (see also Bisnovatyi-Kogan and Chechetkin
[8], and references therein).

Non-catalyzed neutron star crust represents a source of energy. The energy
release takes place due to the non-equilibrium processes in the crust of an ac-
creting neutron star. Some aspects of this problem have been considered by
Vartanyan and Ovakimova [89] using an unrealistic model of neutron star mat-
ter. Detailed study of non-equilibrium processes, and resulting crustal heating
was presented by Haensel and Zdunik [37].

The non-equilibrium processes lead to the appearance of spherical (or more
generally - quasi-spherical) surfaces, on which heat is produced at a rate propor-
tional to accretion rate. As Haensel and Zdunik [37] have shown, the resulting
total heat release in the solid crust can be larger than the original inward heat
flow resulting from the steady hydrogen burning between the helium flashes [34].

6.1 A model of accreted neutron star crust

We assume that at a given pressure, P , the neutron star crust is a body-centered
cubic crystal lattice of a single species of atomic nucleus (A,Z), immersed in an
electron gas, and, above neutron drip point, also in a neutron gas. The maxi-
mum temperature in the crust of accreting neutron star can be as high as 108K
[34]. Therefore, we can expect that some part of the neutron star crust will be
in a liquid phase. While the transport properties of dense matter such as heat
conductivity depend sensitively on whether matter is in a liquid or a crystal-
lized phase, melting of the crust introduces only minor corrections to thermody-
namic potentials. The latent heat of crystallization is of the order of less than
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0.1 keV per one accreted nucleon (c.f.,[49]) and thus negligible. Generally, for
ρ >∼ 108 g cm−3 and T <∼ 108 K thermal contributions to thermodynamic poten-
tials can be safely neglected and the composition and equation of state of dense
matter can be calculated using the T = 0 K approximation.

In the case of neutron star matter below the helium layer we have
ρ >∼ 107 g cm−3 and T <∼ 108 K and we may therefore calculate all the thermody-
namic potentials in the T = 0 K approximation. Before the pycnonuclear fusion
becomes possible, the unit (W-S) cell contains a fixed number of nucleons, Acell,
equal to the mass number of the nucleus produced by explosive helium burning.
In other words, the number of nuclei in an evolving neutron star matter element
is then fixed.

In what follows, we will describe a scenario developed by Haensel and Zdunik
[37],[38]. Before the neutron drip point Acell = A. At given pressure the equilib-
rium value of Z is determined from the condition that the Gibbs energy of the
unit cell, (2), be minimum. Experimental values of WN (A,Z) are used whenever
they were available. For the nuclei for which no experimental data exist Haensel
and Zdunik [37] used a theoretical compressible liquid drop model (CLDM) of
Mackie and Baym [56]. A few phenomenological parameters of this model have
been fitted to the experimental masses of the atomic nuclei without introduc-
ing any shell correction term. Haensel and Zdunik [37], [38] used this model in
its original form, which gives the best fit to nuclear masses. Thus, the CLDM
formula for WN (A,Z) includes the phenomenological even - odd pairing term,
which makes even-even nuclei more bound, and odd-odd nuclei less bound than
the odd-even ones.

Above neutron drip point, P > PND ≡ P (ρND), neutrons are present in two
phases: bound in nuclei and as a neutron gas outside nuclei. In what follows, we
use the formalism and notation applied previously for the determination of the
neutron drip point in Sect. 3. The Gibbs energy of the W-S cell is then written
in the form

Gcell(A,Z) = WN (A,Z, nn) + WL(nN , Z)
+[Ee(ne) + (1− nNVN ) En(nn) + P ]/nN , (27)

where En is the energy density of neutron gas (including neutron rest energy)
and VN is the volume of the nucleus. At given (A,Z) the values of nN , ne, nn

are determined from the system of three equations,

P = Pe(ne) + PL(nN , Z) + Pn(nn) , ne = ZnN
Acell = A + nn(1/nN − VN ) , (28)

supplemented by the condition of mechanical equilibrium of the surface of the
nucleus under the external pressure of neutron gas. This last condition, applied
to the compressible liquid drop model of Mackie and Baym [56] for WN which
takes into account the influence of the neutron gas on the nuclear surface energy
and on the nuclear radius, yields the equilibrium value of VN .

The model described above enables one to calculate, at a given pressure,
the ground state of a matter element under an additional constraint of a fixed
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number of nuclei. However, we should remind that our task is to follow the ground
state of a matter element as it descends deeper and deeper into the neutron star
interior under the pressure of accreted matter. This process is taking place at
rather low temperature. In practice, this means that matter element sits at the
local minimum of Gcell, and that this local ground state can change only after the
corresponding energy barrier vanishes. 4 In view of the characteristic behavior
of WN as a function of A and Z, resulting from the pairing of nucleons in nuclei,
this leads to non-equilibrium character of processes which change Z (and A)
during the evolution of the neutron star crust.

6.2 Evolution of matter element

In what follows we will study evolution of a matter element with initial density
∼ 108 g cm−3, under a gradual compression up to the density ∼ 1013 g cm−3,
the temperature of matter not exceeding significantly 108 K. In order to estimate
the timescales for such a compression process, let us consider a 1.4 M� neutron
star, with a medium-stiff EOS of the liquid core. Calculation of the density
profile of such a neutron star shows, that in order to compress a matter element,
initially at ρ = 108 g cm−3, to the density ρ = 6 × 1011 g cm−3, which as we
will see corresponds to the neutron drip point for our specific scenario, the star
should accrete a mass of 3 × 10−5M�. This would take 3 × 105/Ṁ−10 years,
where Ṁ−10 is the accretion rate in the units of 10−10M�/y. Compression up to
1.2×1013 g cm−3 (this is maximum density which we will consider) would require
accretion of ∼ 5×10−4M� and thus would take ∼ 5×106/Ṁ−10 years. After such
a time the whole outer part of the neutron star crust with ρ < 1.2×1013 g cm−3

would consist of non-catalyzed matter, studied in the present section.
Let us follow the evolution of an element of matter produced in the explosive

helium burning, as it undergoes compression due to accretion of matter onto
stellar surface. Let us start with a pressure close to that just below the helium
layer. We have there A=56, Z=26. We shall follow possible transformations
taking place in the unit cell during its travel to the deep layers of the neutron
star crust. For pressures corresponding to ρ < ρ1 = 5.852 × 108 g cm−3 the
minimum of Gcell corresponds to 56Fe. For pressure just above P1 = P (ρ1)
the minimum is obtained for 56Cr. However, direct transition 56Fe→56Cr would
require an extremely slow double electron capture.

In view of the extreme slowness of the ee capture 2e− +56 Fe −→56 Cr+2νe,
reaction

56Fe + e− −→56 Mn + νe (29)

must proceed first. With increasing P , the two-step electron capture reactions
occur each time when the threshold for a single electron capture is reached,
4 Strictly speaking, even at T = 0 quantum tunneling through energy barrier is pos-

sible. Therefore, strict condition for the possibility of leaving the local minimum is
that the energy barrier becomes sufficiently low (or thin) so that the timescale for
tunneling is short compared to matter element compression timescale.
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according to a general scheme

(A,Z) + e− −→ (A,Z − 1) + νe ,
(A,Z − 1) + e− −→ (A,Z − 2) + νe . (30)

Usually, the first step takes place very (infinitesimally) close to the threshold and
therefore is accompanied by a very small (infinitesimal) energy release (quasi-
equilibrium process). An exception from this rule is the case in which, due to
the selection rules, first electron capture must proceed into an excited state of
the daughter nucleus. This is the case of reaction (29). Notice, that because
of low temperature, the nucleus undergoing an electron capture should always
be considered as being in its ground state. If the daughter nucleus is produced
in an excited state, then it de-excites by gamma emission before next electron
capture. This leads to the heat release Q1 = Eexc per cell. Second electron
capture proceeds always in a non-equilibrium way, because P2 is significantly
above the threshold pressure for the electron capture on the odd-odd (A,Z − 1)
nucleus. Mechanical equilibrium requires that this process takes place at constant
pressure, P2. On the other hand, because of very high thermal conductivity of
matter, resulting from the presence of degenerate electrons, and a very slow
accretion rate, reactions occur at constant temperature, T . Thus, the total heat
release per one W-S cell, accompanying second capture, (30), is given by the
change of the Gibbs energy of the cell (chemical potential of the cell), Q2 =
Gcell(A,Z − 1)−Gcell(A,Z − 2) (see, e.g., Prigogine [75]). On average, most of
the released heat is radiated away by neutrinos, Eν = 5

6 (μe−Δ), where Δ is the
threshold energy for the second (non-equilibrium) electron capture [7].

The effective deposited in matter heat release per one unit cell is thus esti-
mated as

Qcell � Q1 +
1
6
Q2 . (31)

Generally, Q1 	 Qcell.
At ρND = 6.11×1011 g cm−3 neutrons drip out of the nuclei, which are then

56Ar. This process, occurring at constant pressure PND, proceeds in five steps,
and is initiated by an electron capture,

56Ar + e− −→ 56Cl + νe ,
56Cl −→ 55Cl + n ,
55Cl + e− −→ 55S + νe ,
55S −→ 54S + n ,
54S −→ 52S + 2n . (32)

The whole chain of reactions (which we will call non-equilibrium process) can be
symbolically written as 56Ar −→52 S + 4n− 2e− + 2νe.

For P > PND electron captures induce non-equilibrium neutron emissions,
the general rule being that an even number of electron captures is accompanied
by emission of an even total number of neutrons. When determining the path
the system follows during nuclear transformations one uses a simple rule: if
both electron capture and neutron emission are energetically possible, neutron
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emission - which is more rapid - goes first. However, in order to calculate the
effective heat release we have to consider a detailed sequence of reactions, taking
place at the threshold pressure for the first “trigger” reaction of electron capture.

As the element of matter moves deeper and deeper into the neutron star
interior, each time the threshold density for the electron capture is crossed, a
chain of electron captures and neutron emission follows. While the “trigger”
reaction produces virtually no (or very little) energy release, subsequent non-
equilibrium transformations lead to a significant heat production, due mainly
to the downscattering of neutrons and de-excitation of nuclei. This is possible
because emitted neutrons have energies well above the Fermi surface of superfluid
neutron liquid.

Due to electron captures, the value of Z systematically decreases. In con-
sequence, the lowering of the Coulomb barrier for the nucleus-nucleus reaction,
combined with decrease of the separation between nuclei and a simultaneous
increase of the energy of the quantum zero-point vibrations around the lattice
sites opens a possibility of pycnonuclear reactions (for an introduction, see [85]).

In their calculation of the pycnonuclear reaction rate per unit volume, rpyc,
Haensel and Zdunik [37] used the formulae of Salpeter and Van Horn [82] (see
[37] for details). The pycnonuclear timescale is defined as

τpyc =
nN
rpyc

. (33)

The quantity τpyc is a sensitive function of Z and of the density, so that the
pressure at which pycnonuclear fusion starts can be quite easily pointed out.

The electron capture on 40Mg nucleus, taking place at ρ = 1.45 ×
1012 g cm−3, initiates the reaction

40Mg −→34 Ne + 6n− 2e− + 2νe . (34)

The subsequent pycnonuclear fusion of the 34Ne nuclei (Z = 10) takes place
on a timescale of months, much shorter than the time needed for a significant
compression due to accretion. The fusion reaction can be written symbolically
as

34Ne +34 Ne −→68 Ca . (35)

After the pycnonuclear fusion has been completed, the number of nuclei is
decreased by a factor of two. Further evolution of the element of matter takes
place at a fixed number of nucleons in the unit cell, doubled with respect to
the initial one, Acell = 112. Pycnonuclear fusion is accompanied by a significant
energy release in the form of the excitation energy of the final nucleus. The energy
release resulting from pycnonuclear fusion represents an important source of heat
within the crust. Results concerning the energy release will be presented in the
next subsection.
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Table 2. Non-equilibrium processes in the outer crust. Temperature effects are ne-
glected. P and ρ are the threshold pressure and density for reactions initiated by the
electron capture. Relative density jump at the threshold pressure is denoted by Δρ/ρ.
Last two columns give the total energy release, qtot, and heat deposited in matter, q,
both per one accreted nucleon, accompanying non-equilibrium reactions. After [37].

P ρ process Δρ/ρ qtot q

(dyn cm−2) (g cm−3) (MeV) (MeV)
7.23 1026 1.49 109 56Fe →56 Cr − 2e− + 2νe 0.08 0.04 0.01
9.57 1027 1.11 1010 56Cr →56 Ti − 2e− + 2νe 0.09 0.04 0.01
1.15 1029 7.85 1010 56Ti →56 Ca − 2e− + 2νe 0.10 0.05 0.01
4.78 1029 2.50 1011 56Ca →56 Ar − 2e− + 2νe 0.11 0.05 0.01
1.36 1030 6.11 1011 56Ar →52 S + 4n − 2e− + 2νe 0.12 0.06 0.05

Table 3. Non-equilibrium processes in the inner crust. Notation as in Table 2. Neutron
fraction in the total number of nucleons, in the layer just above the reaction surface,
is denoted by Xn. After [37].

P ρ process Xn Δρ/ρ q

(dyn cm−2) (g cm−3) (MeV)
1.980 1030 9.075 1011 52S →46 Si + 6n − 2e− + 2νe 0.07 0.13 0.09
2.253 1030 1.131 1012 46Si →40 Mg + 6n − 2e− + 2νe 0.18 0.14 0.10
2.637 1030 1.455 1012 40Mg →34 Ne + 6n − 2e− + 2νe 0.39 0.16 0.12
3.204 1030 1.951 1012 34Ne +34 Ne →68 Ca

68Ca →62 Ar + 6n − 2e− + 2νe 0.39 0.09 0.40
3.216 1030 2.134 1012 62Ar →56 S + 6n − 2e− + 2νe 0.45 0.09 0.05
3.825 1030 2.634 1012 56S →50 Si + 6n − 2e− + 2νe 0.50 0.09 0.06
4.699 1030 3.338 1012 50Si →44 Mg + 6n − 2e− + 2νe 0.55 0.09 0.07
6.044 1030 4.379 1012 44Mg →36 Ne + 8n − 2e− + 2νe

36Ne +36 Ne →72 Ca
72Ca →66 Ar + 6n − 2e− + 2νe 0.61 0.14 0.28

7.233 1030 5.665 1012 66Ar →60 S + 6n − 2e− + 2νe 0.70 0.04 0.02
9.238 1030 7.041 1012 60S →54 Si + 6n − 2e− + 2νe 0.73 0.04 0.02
1.228 1031 8.980 1012 54Si →48 Mg + 6n − 2e− + 2νe 0.76 0.04 0.03
1.602 1031 1.127 1013 48Mg +48 Mg →96 Cr 0.79 0.04 0.11
1.613 1031 1.137 1013 96Cr →88 Ti + 8n − 2e− + 2νe 0.80 0.02 0.01

6.3 Non-equilibrium processes and crustal heating

Detailed results describing the non-equilibrium reactions in the crust of an ac-
creting neutron star are shown in Tables 2, 3. In Table 2 we show results for the
outer neutron star crust, where matter consists of nuclei immersed in electron
gas. Non-equilibrium electron captures generate heat on the spherical surfaces



158 P. Haensel

(actually: in very thin shells) at pressures indicated in the first column of Table
2. The density of matter just above the reaction surface is given in the second
column. Density of matter undergoes a jump at the reaction surface. This results
from the fact that reactions take place at a constant pressure, P � Pe, which is
determined mainly by the electron density ne = ZnN . At constant pressure, a
decrease in Z, implied by the double electron capture, is thus necessarily accom-
panied by the baryon density and mass density increase, with Δρ/ρ � 2/(Z−2).

In the fifth column of Table 2 we give the total heat release in a unit cell,
accompanying a non-equilibrium reaction, divided by the number of nucleons in
the cell. As we have shown in the previous subsection, on average only ∼ 1

6 of
this heat is deposited in matter, the remaining part being radiated away with
neutrinos. In the last column we give the effective (deposited in matter) heat
per nucleon in a non-equilibrium process, q. In the steady thermal state of an
accreting neutron star, effective heat release per unit time on the i-th reaction
surface, Qi, is proportional to the mass accretion rate, Ṁ . This relation can be
written in a suitable form

Qi = 6.03 ·
(

Ṁ

10−10M�/y

)
·
( qi

1 MeV

)
1033 erg/s . (36)

Let us notice that the heat release on the neutron drip surface exceeds the
total remaining heat release in the outer crust. This is due to the fact that
non-equilibrium neutron emission represents a very efficient channel of matter
heating.

In Table 3 we collected results referring to the inner crust of accreting
neutron star. The fraction of nucleons in the neutron gas phase is denoted by Xn

and refers to the crust shell laying just above the reaction surface. For the sake
of simplicity, the description of non-equilibrium processes is largely symbolic.

Results presented in Table 3 show that when a chain of non-equilibrium
processes includes pycnonuclear fusion, heat production may be more than an
order of magnitude larger than in the case involving only electron captures and
neutron emission.

For ρ > 1.2 1013 g cm−3 the energy release per nucleon, due to non-
equilibrium processes, is rather small compared to that in the ρND < ρ <
1.2 1013g cm−3 layer. To some extent this is due to the fact that atomic nu-
clei immersed in a dense neutron gas contain then only a small fraction of the
total number of nucleons. On the other hand, being more and more neutron rich,
these nuclei become less and less dense and less and less bound.

The validity of the Haensel and Zdunik [37],[38] model becomes question-
able at the densities a few times 1013g cm−3. However, one may expect that at
such a high density properties of non-catalyzed matter become rather simple.
Calculation shows, that if a matter element produced originally in a helium flash
could reach a density ∼ 1014g cm−3, we should expect it to contain only ∼ 10%
of nucleons bound in atomic nuclei. In view of this, pressure of matter in the
shells of constant (A,Z) (as well as many other properties) at this (and higher)
density may be expected to be dominated by non-relativistic neutrons.
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6.4 Astrophysical consequences

Non-catalyzed matter in the crust of an accreting neutron stars turns out to be
an important reservoir of energy, which is partly released in the non-equilibrium
reactions involving electron captures, neutron emissions and pycnonuclear fu-
sion. The total heat release due to non-equilibrium reactions in the neutron
star crust is larger than a typical inward heat flow produced by the steady
thermonuclear burning of accreted matter between the helium flashes. Detailed
calculations of the steady thermal state of neutron stars, accreting at rates
10−11 <∼ Ṁ/(M�/y) <∼ 10−9, taking due account of non-equilibrium heat sources
in the crust, and with various models of neutron star core, were performed in
[58].

Many neutron stars in close X-ray binaries are transient accretors (tran-
sients). Such neutron stars exhibit X-ray outbursts separated by long periods
(months or even years) of quiescence. It is believed that quiescence corresponds
to a low-level, or in extreme case halted, accretion onto neutron star. During
high-accretion episodes, heat is deposited by non-equilibrium processes in the
deep layers (1012 − 1013 g cm−3) of accreted crust. This has been shown to be
possible mechanism to maintain temperature of neutron star interior sufficiently
high to explain thermal X-ray radiation in quiescence [17],[80].

7 Composition of accreted crust

Many neutron stars may have accreted crust. For example, consider the millisec-
ond pulsars. They are thought to be old neutron stars, spun up by the accretion,
via an accretion disk, of ∼ 0.1M� from their companion in a close binary system
(see, e.g., [44]). Clearly, if such scenario is correct, the whole crust of a typical
millisecond pulsar is built of accreted, non-catalyzed matter.

Composition of accreted crust in the “single nucleus” approximation, dis-
cussed in detail in the preceding section, was calculated by Haensel and Zdunik
[38]. These authors used the same compressible liquid drop model of nuclei as
that applied in their study of non-equilibrium processes in accreting crust. In
Table 4 we list the nuclides present in the crust of an accreting neutron star. In
the third, fourth and fifth columns we give the maximum pressure, Pmax, mass
density, ρmax, and baryon density, nb,max, at which the nuclide is present. In the
sixth column we give the value of the electron chemical potential (including rest
energy), μe, at this density. The fraction of nucleons in the neutron gas phase
within the layer ending at Pmax, denoted by Xn, is shown in the seventh column.
Transition to the next nuclide is accompanied by a density jump. In the last col-
umn of Table 4 we give the corresponding relative density increase, Δρ/ρ. To a
very good approximation we have Δnb/nb � Δρ/ρ. Relative density jumps are
significantly larger than those in the case of cold catalyzed matter, and exceed
10% above neutron drip point.

As one sees from Table 4, composition of the crust of an accreting neutron
star is vastly different from that of a standard neutron star composed of the
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catalyzed matter. In the case of an accreting neutron star the value of Z is
typically <∼ 20, to be compared with Z = 40− 50 for the cold catalyzed matter
above the neutron drip point. At ρ � 1013 g cm−3 the mass number of nuclei in
the accreted crust is about 60, to be compared with about 200 in cold catalyzed
matter of the same density. The neutron drip occurs at a similar density as in the
cold catalyzed matter. At the highest density considered, ρ � 1.2 1013 g cm−3,
more than 80% of nucleons form neutron gas outside nuclei. The neutron gas
gives there a dominating contribution to the pressure. Another remark to be
made is that composition given in Table 4 corresponds to an idealized scenario
of formation of accreted crust. Possible deviations from this idealized picture are
discussed in Sec.10.

An important remark concerns the values of Z. The mean charge of nuclei
in the crust of an accreting neutron star turns out to be less than half of that
characteristic of the cold catalyzed matter. As pointed out by Sato [83], this will
result in a significant reduction of the shear modulus of the crust (see Sect. 9).

8 Equation of state of the neutron star crust

The equation of state (EOS) constitutes an essential input for the calculation
of the neutron star models. In the present Section, we discuss the EOS of the
outer and inner neutron star crust. Two basic models, corresponding to different
idealized scenarios of crust formation, will be considered. First model will be
based on the ground state approximation, in which the crust is assumed to be
built of cold catalyzed matter (structure of the crust in this approximation was
discussed in Sections 3, 4, 5). Then we will describe the EOS of accreted crust,
assuming formation scenario described in Sect.6, where the structure of the outer
and inner crust was derived within the “single nucleus” approximation.

Fig. 8. Comparison of the SLy and FPS EOS.
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8.1 Ground state approximation

The EOS of the outer crust in the ground state approximation is rather well
established. Generally, the EOS of Haensel and Pichon [39] is quite similar to
the more than two decades older BPS EOS [4]. In some pressure intervals one
notices a few percent difference between densities, resulting from the difference
in the nuclides present at the same pressures.

As soon as one leaves the region of experimentally known nuclei, the EOS
of cold catalyzed matter becomes uncertain. This uncertainty rises above the
neutron drip density, where only theoretical models can be used. The properties
of nuclei become influenced by the outside neutron gas, which contributes more
and more to the total pressure. Therefore, the problem of correct modelling of
equation of state of pure neutron gas at subnuclear densities becomes important.
The real EOS of cold catalyzed matter stems from a real nucleon Hamiltonian,
which is expected to describe nucleon interactions at ρ <∼ 2ρ0 (at higher densities,
non-nucleon degrees of freedom, such as hyperons, quarks (?), meson condensates
(?), etc., may become relevant). In practice, in order to make the solution of the
many-body problem feasible, the task was reduced to that of finding an effective
nucleon Hamiltonian, which would enable one to calculate reliably the EOS of
cold catalyzed matter for 1011 g cm−3 <∼ ρ <∼ ρ0, including therefore the crust-
liquid core transition.

Of course, for ρ <∼ 4×1011 g cm−3 one can use EOS based on experimental,
or semi-empirical nuclear masses, but it is reassuring to check that this EOS
is nicely reproduced by a “theoretical EOS”, based on an effective nucleon-
nucleon interactions FPS and SLy. As one can see in Fig.8, significant differences
between the SLy and FPS EOS are restricted to the density interval 4×1011−4×
1012 g cm−3. They result mainly from the fact that ρND(SLy) � 4×1011 g cm−3

Fig. 9. Comparison of the SLy and FPS EOS near the crust-liquid core transition.
Thick solid line: inner crust with spherical nuclei. Dashed line corresponds to “exotic
nuclear shapes”. Thin solid line: uniform npe matter.
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Table 4. Composition of the crust of an accreting neutron star. After [38]. For further
explanation see the text.

Z A Pmax ρmax nb,max μe Xn Δρ/ρ

(dyn cm−2) (g cm−3) (cm−3) MeV (%)
26 56 7.235 1026 1.494 109 8.994 1032 4.59 0.00 8.2
24 56 9.569 1027 1.1145 1010 6.701 1033 8.69 0.00 8.9
22 56 1.152 1029 7.848 1010 4.708 1034 16.15 0.00 9.8
20 56 4.747 1029 2.496 1011 1.494 1035 22.99 0.00 10.9
18 56 1.361 1030 6.110 1011 3.651 1035 29.89 0.00 12.1
16 52 1.980 1030 9.075 1011 5.418 1035 32.78 0.07 13.1
14 46 2.253 1030 1.131 1012 6.748 1035 33.73 0.18 14.4
12 40 2.637 1030 1.455 1012 8.682 1035 34.85 0.29 17.0
20 68 2.771 1030 1.766 1012 1.054 1036 34.98 0.39 8.3
18 62 3.216 1030 2.134 1012 1.273 1036 35.98 0.45 8.6
16 56 3.825 1030 2.634 1012 1.571 1036 37.10 0.50 9.0
14 50 4.699 1030 3.338 1012 1.990 1036 38.40 0.55 9.3
12 44 6.044 1030 4.379 1012 2.610 1036 39.92 0.61 13.8
18 66 7.233 1030 5.665 1012 3.377 1036 39.52 0.70 4.4
16 60 9.2385 1030 7.041 1012 4.196 1036 40.85 0.73 4.3
14 54 1.228 1031 8.980 1012 5.349 1036 42.37 0.76 4.0
12 48 1.602 1031 1.127 1013 6.712 1036 43.41 0.79 3.5
24 96 1.613 1031 1.137 1013 6.769 1036 43.55 0.79 1.5
22 88 1.816 1031 1.253 1013 7.464 1036 43.69 0.80 ....

(in good agreement with the “empirical EOS” of [39]), while ρND(FPS) � 6 ×
1011 g cm−3. For 4 × 1012 g cm−3 <∼ ρ <∼ 1014 g cm−3 the SLy and FPS EOS
are very similar, with the FPS EOS being a little softer at highest densities.
Detailed behavior of two EOS near crust-liquid core transition can be seen in
Fig.9. The FPS EOS is softer than the SLy one.

In the case of the SLy EOS the crust-liquid core transition takes place as
a very weak first-order phase transition, with relative density jump of the order
of a percent. Let us remind that for this model spherical nuclei persist down
to the bottom edge of the crust. As one can see in Fig.9, crust-core transition
is accompanied by a noticeable jump of the slope (stiffening) of the EOS. For
the FPS EOS, the crust-core transition takes place through a sequence of phase
transitions with changes of nuclear shapes. These phase transitions make the
crust-core transition smoother than in the SLy case, with a gradual increase of
stiffness, which nevertheless suffers a visible jump at the bottom of the bubble-
layer edge. All in all, while presence of exotic nuclear shapes is expected to
have dramatic consequences for the transport, neutrino emission, and elastic
properties of neutron star matter, their effect on the EOS is rather small.
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The SLy EOS of the crust, calculated including adjacent segments of the
liquid core and the outer crust, is shown in Fig.10. In the outer crust segment, the
SLy EOS cannot be graphically distinguished from that of Haensel and Pichon
[39], which was based on experimental nuclear masses.

8.2 Accreted crust

Equation of state of accreted crust was calculated by Haensel and Zdunik [38],
within the “single nucleus” scenario, described in preceding subsection. This EOS
is compared with SLy model of cold catalyzed matter in Fig. 11. Up to neutron
drip point, both equations of state are quite similar. This is easily understood:
for ρ < ρND we have P � Pe, which in turn depends only the ratio Z/A, quite
similar for both accreted and ground state EOS.

Significant differences appear for ρND <∼ ρ <∼ 10ρND, where EOS of ac-
creted matter is stiffer than that of cold catalyzed matter. Also, one notices
well pronounced constant-pressure density jumps in EOS of accreted matter,
which are due to discontinuous changes in nuclear composition. These density
jumps, accompanying first order phase transitions, are particularly large for
ρND <∼ ρ <∼ 10ρND, and lead to an overall softening of the EOS of accreted
crust. For ρ >∼ 1013 g cm−3 EOS for accreted crust becomes very similar to that
of cold catalyzed matter. The EOS of accreted crust is given in the density inter-
val from ∼ 108 g cm−3 to ρ � 1.5×1013 g cm−3. The lower limit corresponds to

Fig. 10. The SLy EOS. Dotted vertical lines correspond to the neutron drip and crust
bottom edge.
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the minimum density of the processed accreted matter, just below the bottom of
the helium layer (matter is there assumed to be composed of 56Fe). The choice of
the upper limit is based on two arguments. Firstly, for ρ > 1013 g cm−3 our equa-
tion of state becomes very similar that of the cold catalyzed matter. Secondly,
the validity of the Haensel and Zdunik [38] model of dense matter and, in par-
ticular, of the Mackie and Baym [56] model for nuclei, used in their calculations,
becomes questionable for the densities much higher than ∼ 1013 g cm−3.

It is therefore fortunate, that the difference between the cold catalyzed
matter and accreted crust equations of state decreases for large density and for
ρ > 1013 g cm−3 both curves are very close to each other. This is due to the fact
that for such a high density the equation of state in both cases is determined
mainly by the properties of neutron gas. In view of this, the use of the equation
of state of the catalyzed matter for the calculation of the hydrostatic equilibrium
of the high density (ρ > 1013 g cm−3) interior layer of the crust of an accreting
neutron star should give a rather good approximation, as far as the density
profile is concerned.

9 Elastic properties of neutron star crust

In contrast to the liquid core, solid crust can sustain an elastic strain. As neutron
stars are relativistic objects, a relativistic theory of elastic media in a curved
space-time should in principle be used to describe elastic effects in neutron
star structure and dynamics. Such a theory of elasticity has been developed
by Carter and Quintana [21] and applied by them to rotating neutron star mod-
els in [22],[23]. However, in view of the smallness of elastic forces compared to
those of gravity and pressure, we will restrict ourselves, for the sake of simplicity,
to the Newtonian version of the theory of elasticity [50].

The state of thermodynamic equilibrium of an element of neutron-star
crust corresponds to specific equilibrium positions of nuclei, which will be de-

Fig. 11. Comparison of the SLy EOS for cold catalyzed matter (dotted line) and the
EOS of accreted crust.
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Fig. 12. Melting temperature of neutron star crust versus density. Solid line: Melting
temperature for the ground state composition of the crust (Haensel and Pichon [39]
for the outer crust and Negele and Vautherin [62] for the inner crust). Jumps at some
densities correspond to change of the nuclide. Dash-dotted line: melting temperature of
the ground state inner crust, based on the compressible liquid drop model calculation
of Douchin and Haensel [30]; its smooth behavior results from dense matter model
nature. Dotted line corresponds to the accreted crust model of [38].

noted by r. For pure nuclear composition (one-component plasma) at T = 0
and ρ < 1014 g cm−3, r points to the lattice sites of the bcc lattice of nuclei.
(Strictly speaking, r corresponds to mean positions of nuclei, which suffer both
quantum zero-point, as well as thermal, oscillations.) Neutron star evolution
(e.g., spin-down of rotation, cooling) or some outer influence (tidal forces from a
close massive body, accretion of matter, electromagnetic strains associated with
strong internal magnetic fields) may lead to deformation of the crust. In what
follows, we will neglect the thermal contributions to thermodynamic quantities
and restrict to the T = 0 approximation.

Deformation of a crust element with respect to the ground state configura-
tion implies a displacement of nuclei into their new positions r′ = r + u, where
u = u(r) is the displacement vector. In the continuum limit, relevant for macro-
scopic phenomena, both r and u are treated as continuous fields. Non-zero u is
accompanied by the appearance of elastic strain (i.e., forces which tend to return
the matter element to the equilibrium state of minimum energy density E0), and
yields deformation energy density Edef = E(u) − E0. 5 Uniform translation, de-
scribed by an r-independent displacement field, does not contribute to Edef , and
the real (genuine) deformation is described by the (symmetric) strain tensor

uik = uki =
1
2

(
∂ui

∂xk
+

∂uk

∂xi

)
, (37)

5 In this section, by “energy” we will always mean energy of a unit volume of matter
(i.e., energy density)
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where i, j = 1, 2, 3, and x1 = x, x2 = y, x3 = z. The above form of uik is valid
when all components of u are small, and terms quadratic in the components of
u can be neglected compared to the linear ones [50].

Each deformation can be split into compression and shear components,

uik = ucomp
ik + ushear

ik , (38)

where
ucomp

ik =
1
3
divu δik , ushear

ik = uik −
1
3
divu δik . (39)

After a deformation, the volume of a matter element changes according to dV ′ =
(1 + divu)dV . Pure compression, which does not influence a shape of matter
element, is described by uik = aδik. Pure shear deformation keeps the volume of
matter element constant, so that div u = 0.

To lowest order, deformation energy is quadratic in the deformation tensor,

Edef =
1
2
λiklmuikulm , (40)

where summation is assumed over repeated indices. Since deformation energy
Edef is a scalar, λiklm are components of a rank fourth tensor. While the total
number of components λiklm is 81, general symmetry relations reduce the max-
imum number of linearly independent components (elastic moduli) to 21. The
number of independent elastic moduli decreases with increasing symmetry of
elastic medium, and becomes as small as three in the case of a bcc crystal, and
two in the case of an isotropic solid. Elastic stress tensor, σik, is derived from
from the deformation energy via σik = ∂Edef/∂uik.

9.1 From bcc lattice to isotropic solid

While microscopically the ground state of neutron star crust at ρ <∼ 1014 g cm−3

corresponds to a bcc lattice, one usually assumes that its macroscopic prop-
erties, relevant for the neutron star calculations, are those of an isotropic bcc
polycrystal. Such an assumption is made, because it seems quite probable that
neutron star crust is better approximated by a polycrystal than by a monocrys-
tal (see, however, [10]), and also for the sake of simplicity. Elastic properties
of an isotropic solid are described by two elastic moduli, and the deformation
energy can be expressed as

Edef =
1
2
K(div u)2 + μ

(
uik −

1
3
δikdiv u

)2

. (41)

Here, μ is the shear modulus and K is the compression modulus of isotropic solid.
The stress tensor is then calculated as

σik =
∂Edef

∂uik
= Kdiv u δik + 2μ

(
uik −

1
3
div u δik

)
. (42)
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Considering pure uniform compression one finds that

K = nb
∂P

∂nb
= γP , (43)

where γ is the adiabatic index, γ ≡ (nb/P )dP/dnb .
Detailed calculations of directionally averaged effective shear modulus of a

bcc Coulomb solid, appropriate for the polycrystalline crusts of neutron stars,
were performed by Ogata and Ichimaru [65]. These authors considered a one com-
ponent bcc Coulomb crystal, neglecting screening by the degenerate electrons as
well as the quantum zero-point motion of the ions about their equilibrium lattice
sites. The deformation energy, resulting from the application of a specific strain
uik, was evaluated directly through the Monte Carlo sampling.

In the case of an ideal bcc lattice there are only three independent elastic
moduli, denoted traditionally as c11, c12 and c44 (see, e.g., [47]). When the
crystal is deformed without changing (to lowest order in uik) the volume of
matter element, only two independent elastic moduli are relevant, because

Edef = b11(u2
xx + u2

yy + u2
zz) + c44(u2

xy + u2
xz + u2

yz), for divu = 0 , (44)

with b11 = 1
2 (c11 − c12). At T = 0, Ogata and Ichimaru (1990) find b11 =

0.0245nN (Ze)2/rc, c44 = 0.1827nN (Ze)2/rc. Significant difference between b11
and c44 indicates high degree of elastic anisotropy of an ideal bcc monocrystal.

While treating neutron star crust as an isotropic solid is a reasonable ap-
proximation (ideal long-range order does not exist there, and we are most prob-

Fig. 13. Effective shear modulus μ versus neutron star matter density, assuming bcc
crystal lattice. Solid line - cold catalyzed matter (Haensel and Pichon [39] model for the
outer crust, and that of Negele and Vautherin [62] for the inner crust). Dash-dotted line
- cold catalyzed matter calculated by Douchin and Haensel [30] (compressible liquid
drop model, based on SLy4 effective N-N interaction). Dotted line - accreted crust
model of Haensel and Zdunik [38].
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ably dealing with a bcc polycrystal), the choice of an “effective” shear modulus
deserves a comment. In numerous papers treating the elastic aspects of neu-
tron star dynamics, a standard choice was μ = c44 ([5],[69], [57] and references
therein). It is clear, that replacing μ by a single maximal elastic modulus of
strongly anisotropic bcc lattice is not appropriate. Correct value of μ was cal-
culated by Ogata and Ichimaru [65], who performed directional averages over
rotations of the Cartesian axes. At T = 0, they obtained (neglecting quantum
zero-point oscillations of nuclei)

μ =
1
5

(2b11 + 3c44) = 0.1194
nN (Ze)2

rc
, (45)

nearly two times smaller than μ = c44 used in ([5],[69],[57]). Dependence of
μ on temperature was studied, using the Monte Carlo sampling method, by
Strohmayer et al. [86]. These authors found that their results can be represented
via a simple analytic formula

μ(T ) =
μ(0)

1 + 1.781 (100/Γ )2
, (46)

where the ion-coupling parameter Γ = Z2e2/(rckBT ), and quantum zero-point
motion of nuclei has been neglected. Formula (46) fits their numerical results
within the estimated numerical error of the Monte Carlo scheme, and reproduces
correct T = 0 (i.e., Γ =∞) limit. As expected, effective shear modulus decreases
with increasing temperature.

Let us discuss now qualitative properties of the isotropic neutron star crust.
One can easily show, that μ 	 K. This means that neutron star crust is much
more susceptible to shear than to compression; its Poisons coefficient σ � 1/2,
while its Young modulus E � 3μ (for definitions, see [50]).

Strictly speaking, the formulae given in the present subsection hold for the
outer crust, where rN 	 rc. They neglect also the effect of the quantum zero-
point vibrations of nuclei around their lattice sites. Therefore, in the case of the
inner crust these formulae give only an approximation of the actual values of μ.

9.2 Exotic nuclei

Some models of neutron-star matter predict existence of unusual nuclei (rods,
plates, tubes, bubbles) in the bottom layer of the crust with ρ >∼ 1014 g cm−3.
Possible structure of this bottom layer was discussed in Sect. 5. In what follows
we will concentrate on two specific unusual shapes, namely rods and plates, which
are expected to fill most of the bottom crust layer. The properties of matter
containing rods and plates are intermediate between those of solids and liquids.
For example, displacement of an element of plate matter parallel to the plate
plane or rod matter in the direction of rods, is not opposed by restoring forces:
this is typical property of a liquid. However, elastic strain opposes any bending
of planes or rods, a property specific of a solid. Being intermediate between solids
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and liquids, these kinds of matter are usually referred to as mesomorphic phases,
or liquid crystals (see, e.g., [50],[35]). Elastic properties of rod and plate phases
of neutron star matter were studied by Pethick and Potekhin [73] (see also [72]).

10 Deviations from idealized models

The ground state crust and accreted crust, described in preceding sections of
the present review correspond to idealized perfect one-component plasmas. The
real neutron-star crust may be expected to deviate from these idealized mod-
els. The practical question to be a asked (and to be answered) is: how much
the matter of a real neutron-star crust deviates from a one-component plasma?
The knowledge of “imperfections” of the crust is particularly important for its
transport properties. The motion of electrons in a significantly disordered ion
lattice is qualitatively different from that in a perfect crystal. In the case of a
perfect crystal, electrons move in a strictly periodic field, and scatter only on
the elementary excitations of the ion lattice - phonons. Disordered ions act as
individual scattering centers, strongly limiting electron transport of heat and
charge.

10.1 Impurities in a crust of a newly-born neutron star

Initial temperature of the outer layers of a newly born neutron star exceeds
1010 K. Under such conditions, nuclear composition of the matter is character-
ized by some statistical distribution of (A,Z) nuclei in a hot plasma. Initially,
the spread in (A,Z) is rather wide [20]. After solidification of the crust its com-
position is practically frozen, so that it may be expected to reflect the situa-
tion at crystallization point rather than in the ground state. In contrast to the
ground state composition of the outer crust, at T � Tm transitions between
shells (A1, Z1) and (A2, Z2) will be continuous, via a transition layer consist-
ing of a mixture of both nuclides. Only sufficiently far from the transition layer
one is dealing with a one-component plasma. Two-component transition layers
were studied by De Blasio [11],[12]. The radial width of the transition layers in
the outer crust, calculated in [12] for the density range 109 − 1011 g cm−3, was
4− 12 m.

10.2 Non-equilibrium neutrons

Higher temperatures are characterized by larger fraction of evaporated nucleons.
The most sensitive region is that around the neutron drip point in cold catalyzed
matter, ρND � 4 × 1011 g cm−3. At T � 5 × 109 K, there is a non-negligible
fraction of free neutrons for 1011 g cm−3 <∼ ρ <∼ ρND (see lower panel of Fig.1).
In general, one notices a significant excess of free neutrons for the densities
1011 g cm−3 <∼ ρ <∼ 1012 g cm−3 as compared to the ground-state composition
of the crust. With further cooling, there will be a tendency to absorb these excess
neutrons by nuclei, which in turn will increase their A, and modify their Z due
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to weak-interaction processes. However, the temperature may be expected to
be too low to reach full nuclear equilibrium, mainly because of high Coulomb
barriers, and the lack of free protons and α-particles. Therefore, one may expect
deviations from the ground-state composition (excess of dripped neutrons) in
the cooled crust at 1011 g cm−3 <∼ ρ <∼ 1012 g cm−3 [8].

10.3 Thermal fluctuations and impurities in the inner crust

General problem of thermal fluctuations of the values of Z and Ncell in the in-
ner crust, at T � Tm >∼ 109 K, was studied by Jones [46]. Detailed calculations
[46], performed within the Compressible Liquid Drop Model, and combined with
consideration of the shell and pairing effects, suggest a high degree of hetero-
geneity in Z to be frozen as the temperature falls below Tm, with substantial
population of two closed Z-shells (Z = 40 and Z = 50). It should be mentioned
that high value of Tm (large thermal energies) and large fraction of neutrons
(with large fraction of them unbound) in the inner crust are both favorable for
impurity fractions higher than those in the outer crust. One has to keep in mind,
however, that the kinetics of phase transitions is notoriously difficult for theoret-
ical modelling, especially if approximations used cannot be tested in laboratory.
Fortunately, while the “purity” of the crust is of crucial importance for its trans-
port properties, the equation of state is not very sensitive to deviations from the
one-nucleus model.

10.4 Impurities in accreted crust

If the ashes of this explosive burning are well approximated by pure 56Fe,
then “single-nucleus scenario” described in Sect. 6 may be a valid descrip-
tion. Actually, this is only an approximation; the problem of the detailed out-
come of the time-dependent nucleosynthesis during X-ray bursts is very compli-
cated and should be considered as not completely resolved (see, e.g. [78],[84])
The nature of the unstable thermonuclear burning at higher accretion rates
10−8 M�/y <∼ Ṁ <∼ 10−9 M�/y is not well understood. The ashes from such
a burning might contain some admixture of nuclei beyond the iron group, with
A � 60 − 100 [84]. Of course, even replacing pure 56Fe by a mix of the iron
group elements would substantially complicate the description of the evolution,
and would lead to deviation of resulting accreted crust from an idealized model
of Sects. 6, 7.

If the starting composition is a mix with significant fractions of different
nuclides, one may expect that further evolution will keep heterogeneity of the
matter. The thermal and electrical conductivity of such a heterogeneous accreted
crust would therefore be drastically lower than that of a perfect crystal. The
equation of state would be rather smooth, in contrast to the extreme case of a
one-nucleus model with significant density jumps. The values of average Z and
A will still be much lower than those characteristic of the ground state of the
crust. The number of shells of nonequilibrium processes triggered by electron
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captures will be much larger, but the total heat release may be expected to be
similar to that estimated in Sect. 6.

10.5 Other scenarios for accreted crust

Up to now, it has been assumed that neutron star accreted baryon mass Mb,acc
larger than that of initial “primordial crust” composed of catalyzed matter,
M0

b,crust. In view of the fact that M0
b,crust ∼ 0.01 M�, to reach such a situation

at constant accretion rate takes 108 years at Ṁ = 10−10 M�/y, with required
accretion time ∝ (Ṁ)−1. At earlier times, the crust is composed of an outer layer
of accreted and processed matter, of baryon mass Mb,acc, and an inner layer of
baryon mass Mb,old � M0

b,crust − Mb,acc, composed of compressed, processed
primordial matter. Evolution of primordial crust under compression due to the
weight of accreted layer can be followed shell by shell, with initial ground state
composition of the shell. Such a study for a set of several shells with initial
density ranging from 108.9 g cm−3 to 1013.6 g cm−3 was performed by Sato [83].

10.6 Density inversions in accreted crust

They might appear during the evolution of the composition of a “primordial
crust” under the weight of accreted layer of matter. In particular, let us focus
our attention on the case of the interface between the 56Fe and 62Ni layers. Let us
denote the ratio of the density of the upper layer to that of the lower one (at the
interface) by ru/l. This ratio is initially ru/l = 0.97 (see Sect. 3). With increasing
pressure, first electron capture take place on 56Fe, 56Fe + e− −→56 Mn + νe,
followed by 56Mn+e− −→56 Cr+νe. The interface 56Cr/62Ni is now characterized
by the density inversion with ru/l = 1.05 [9]. In general, density inversions are
expected to appear and disappear at various interfaces during compression of
primordial crust (Zdunik 2000, unpublished).

Even more significant density inversions may be expected in the case when
accretion is very slow, 10−16 M�/y <∼ Ṁ <∼ 10−12 M�/y (e.g., accretion of
interstellar medium). Under such conditions, temperature within the accreted
envelope is so low that helium burning takes place in pycnonuclear regime. It
starts with 3α fusion and typically terminates with 12C(α, γ)16O reaction [92].
Further compression of the 16O/56Fe interface, accompanied by electron cap-
tures, leads to significant density inversions at the evolving interface. However,
the timescales needed to reach such situations might exceed 1010 yr [9].

If both layers with ru/l > 1 were fluid, the interface would be unstable
with respect to the Rayleigh-Taylor overturn. However, under typical conditions
prevailing at moderate and low accretion rates, T < Tm and both layers are
solid. In view of this, when analyzing the stability of the interface with respect
to perturbations of its shape, one has to include, an addition to pressure and
gravity forces, also elastic forces which are opposing the deformation, and might
stabilize the interface [9].
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Abstract. We discuss the kaon-nucleon interaction and its consequences for the
change of the properties of the kaon in the medium. The onset of kaon condensation
in neutron stars under various scenarios as well its effects for neutron star properties
are reviewed.

1 Introduction – hadrons in dense matter

Due to its non-abelian structure, Quantum Chromodynamics (QCD) becomes
very strongly interacting and highly nonlinear at large space-time distances. As a
consequence, quarks and gluons condense in the physical vacuum with a gain in
condensation energy density of Δε0 ∼ 500 MeV/fm3. The condensation of quarks
is associated with the spontaneous breaking of chiral symmetry, an additional
symmetry of the QCD Lagrangian in the absence of (current) quark masses.

This limit is well justified in the up-down quark sector and to a somewhat
lesser extent for the strange quark. There is good evidence that the mecha-
nism for spontaneous chiral symmetry breaking is provided by classical gluon
field configurations in euclidean space called ‘instantons’. These provide effec-
tive quark-(anti)quark interactions which are strong enough to cause a BCS like
transition to a condensed state of quarks and antiquarks. It has been shown,
that this picture provides an excellent description of hadronic states and corre-
lation functions [1] and it is fair to say that the low-lying hadron spectrum is
dominated by spontaneous chiral symmetry breaking with confinement playing
a much lesser role.

These observations form the basis for discussing the properties of hadrons, or
more precisely hadronic correlation functions, under extreme conditions in tem-
perature and/or density as encountered in the early universe or in the interior of
neutron stars. It is well established from lattice QCD that the vacuum undergoes
a phase transition (or at least a sharp cross over) when heated. Chiral symmetry
is restored in this phase accompanied by a nearly vanishing chiral quark conden-
sate. Though not calculable at present from first principles, the same is expected
to happen at finite density. Since light hadrons are dynamically driven by chiral
symmetry breaking it is obvious to ask how hadronic properties are related to
the vacuum structure and its changes with temperature and density. This is far
from trivial and under intense experimental and theoretical scrutiny at present.

D. Blaschke, N.K. Glendenning, and A. Sedrakian (Eds.): LNP 578, pp. 175–202, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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As detailed below the most economical way for treating hadrons in matter
under extreme conditions is to resort to ‘effective field theories’ in which hadrons
rather than quarks and gluons appear as the fundamental degrees of freedom.
Formally one identifies the pertinent quark currents JΓj (x) = q̄(x)Γjq(x), Γj =
1, γ5, γμ, .. with elementary hadronic fields φi(x) for which the most general
effective Lagrangian, consistent with the underlying symmetries and anomaly
structure of QCD, is written down. We recall that the spontaneous breaking
of chiral symmetry has two important consequences. One is the appearance of
(nearly) massless Goldstone bosons (pions, kaons, eta) and the other the absence
of parity doublets in the hadron spectrum (mπ �= mf0 ,mρ �= ma1 etc). For the
present discussion the first is the most relevant. Chiral symmetry does more than
just predict the existence of Goldstone bosons. It also prescribes and severely
restricts their mutual interactions as well as those with other hadrons. The most
rigorous treatment is in terms of ‘chiral perturbation theory’ [2] but other ’chiral
effective Lagrangians’ including e.g. vector mesons can be devised [3,4].

To elucidate the connection between the vacuum structure (the chiral con-
densate) and the properties of light hadrons let us consider a medium of hadronic
matter in thermal and chemical equilibrium. This is of course well suited for
neutron stars. The QCD partition function is then given in the grand-canonical
ensemble as

ZQCD(V, T, μq) = Tr exp {−(ĤQCD − μqN̂q)/T} , (1)

where ĤQCD denotes the QCD Hamiltonian, N̂q the quark number operator
and μq the quark chemical potential. Statistical expectation of operators are
then given as

〈〈Ô〉〉 = Z−1
∑

n

〈n|Ô|n〉 exp {−(En − μqNn)/T} , (2)

where En are the exact QCD energies (hadrons). The quark condensate 〈〈q̄q〉〉
can be obtained directly from the free energy density

ΩQCD(T, V ) = − lim
V →∞

T

V
lnZQCD(V, T, μq) (3)

via the Feynman-Hellmann theorem as

〈〈q̄q〉〉 =
∂ΩQCD

∂m◦
q

, (4)

where m◦
q denotes the bare (current) quark mass. An obvious first step is to

approximate the free energy density by an ideal gas of hadrons. Using the Gell-
Mann–Oakes–Renner relation for the vacuum chiral condensate

m2
πf

2
π = −2m◦

q〈q̄q〉 , (5)

where mπ is the pion mass and fπ the pion weak-decay constant, one then finds

〈〈q̄q〉〉
〈q̄q〉 = 1−

∑
h

Σh#
s
h(μq, T )
f2

πm
2
π

. (6)



Kaon Condensation in Neutron Stars 177

Here
Σh = m◦

q

∂mh

∂m◦
h

(7)

denotes the ‘sigma’ commutator’ (related to the scalar density of quarks in a
given hadron) and mh the vacuum mass of a given hadron. At low temperature
and small baryochemical potential (μB = 3μq), in which the hadron gas is dom-
inated by thermally excited pions and a free Fermi gas of nucleons, (6) leads to
the celebrated leading-order result

〈〈q̄q〉〉
〈q̄q〉 = 1− T 2

8f2
π

− 0.3
ρ

ρ0
(8)

where ρ0 = 0.16/fm3 is the saturation density of symmetric nuclear matter. This
result is model independent and indicates that the mere presence of an ideal gas
of hadrons already alters the vacuum structure and leads to a decrease of the
condensate, without changing the vacuum properties of the hadrons! Obviously
medium-modifications of hadrons and the corresponding non-trivial change of
the QCD vacuum has to involve hadronic interactions. They become increasingly
important as the medium grows hotter and denser, i.e. as the point of chiral
restoration is approached. Thus, the theoretical description in terms of hadrons
becomes very complex, involving more and more degrees of freedom. In the
vicinity of the restoration transition, in addition, non-perturbative methods are
called for which is far from trivial in effective field theories.

In terms of effective fields φj(x) representing the pertinent quark currents
JΓj

(x), hadronic correlation functions in a hot and dense environment are defined
as the (retarded) current-current correlation functions

Dφj
(ω, q) = −i

∫
d4x ei qxθ(x0)〈〈[φj(x), φj(0)]〉〉. (9)

Note that, in contrast to the vacuum, these correlators depend on energy ω and
three-momentum q separately since Lorentz invariance is explicitly broken by
the presence of matter. Equation (9) can be rewritten in terms of the self energy
Σφj

as
Dφj (ω, q) = (ω2 − q2 −m2

φj
−Σφj (ω, q))−1 (10)

where mφj
denotes the (bare) mass of the field φj and all interaction effects

are incorporated via Σφj which depends on T and μB . Given the effective La-
grangian, the objective is then to evaluate Σφj as realistic as possible. This is
usually attempted by employing ‘chiral counting rules’ for evaluating loop dia-
grams contributing to Σφj

in the low-density and low-temperature limit and by
adjusting the parameters of the effective Lagrangian to as many data for elemen-
tary scattering processes as available. If everything is done consistently, chiral
symmetry is properly incorporated and the relation between hadronic medium
modifications and vacuum changes can be inferred.
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In the vacuum, the hadronic correlators Dφj
are usually dominated by a

few fairly sharp hadronic ‘resonances’. These are visible as ‘peaks’ in the corre-
sponding ‘spectral functions’

ρφj
(ω, q) = − 1

π
ImDφj

(ω, q) (11)

at the hadronic vacuum mass mφj
. Two things will happen in the interacting

medium. On the one hand the mass will change to an effective ‘pole-mass’

m∗2
φj

= m2
φj

+ ReΣφj
(m∗2

φj
, 0) . (12)

In fact, one may have several solutions and the in-medium spectrum shows more
than one ‘peak’. As we shall see, this is usually the case. On the other hand, the
imaginary part ImΣφj acquires additional pieces through the interactions with
the medium giving rise to an increased width. If the width becomes too large,
the peak structure is washed out and the notion of a ‘quasiparticle’ is lost. This
happens when the ‘quasiparticle’ energy

ω2
φj

(q) = q2 + m2
φj

+ ReΣφj (ω
2
φj
, q) (13)

is no longer large compared to the width

Γφj
(ωφj

(q)) = − 1
2π

ImΣ(ωφj
, q) . (14)

This has to be kept in mind when describing in-medium hadrons.
In the following, we will discuss the properties of kaons in the medium and

its consequences for the properties of neutron stars. In sect. 17, the elementary
kaon-nucleon interaction and the in-medium changes of the kaons as seen in
kaonic atoms are described. Chiral effective interactions are constructed which
can describe these data and are used to extract the optical potential of kaons at
finite density. Section 3 utilizes the results found for the kaon optical potential
to apply it to the equation of state for neutron stars. Implications for a first
order phase transition to a kaon condensed state are listed. Effects on the onset
of kaon condensation by the presence of hyperons in matter are studied. Finally,
we summarize in sect. 4 and give an outlook.

2 Kaons in dense matter

The properties of kaons and antikaons in the nuclear medium have been the
object of numerous investigations since the possibility of the existence of a kaon
condensed phase in dense nuclear matter was pointed out by Kaplan and Nelson
[5]. If the K− meson develops sufficient attraction in dense matter it could be
energetically more favorable, after a certain critical density, to neutralize the pos-
itive charge with antikaons rather than with electrons. A condensed kaon phase
would then start to develop, changing drastically the properties of dense neutron
star matter [6,7,8,9,10,11,12,13,14,15]. In fact, kaonic atom data, a compilation
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of which is given in [16], favor an attractive K− nucleus interaction. On the other
hand, the enhancement of the K− yield in Ni+Ni collisions measured recently
by the KaoS collaboration at GSI [17] can be explained by a strong attraction
in the medium for the K− [18,19,20,21]. However, the antikaons might feel a
repulsive potential at the relatively high temperatures attained in heavy-ion re-
actions, and an alternative mechanism, based on the production of antikaons via
an in-medium enhanced πΣ → K−p reaction, has been suggested [22].

The theoretical investigations that go beyond pure phenomenology [23] have
mainly followed two different strategies. One line of approach is that of the
mean field models, built within the framework of chiral Lagrangians [21,24,25,26]
or based on the relativistic Walecka model which are extended to incorporate
strangeness in the form of hyperons [57] or kaons [27] or by using explicitly the
quark degrees of freedom [28]. The other type of approach aims at obtaining the
in-medium K̄N interaction microscopically by incorporating the medium modi-
fications in a K̄N amplitude using (chiral) effective interactions that reproduces
the low energy scattering data and generates the Λ(1405) resonance dynamically
[29,30,31,32,33,34,35]. In this section, we focus on this latter perspective, since
it allows one to systematically study the importance of all the different mecha-
nisms that might modify the K̄N interaction in the medium from that in free
space.

2.1 K̄N interaction in the medium

The free K̄N scattering observables (K̄ = K− or K̄0) are derived from the
scattering amplitude, obtained from the Bethe-Salpeter equation

T = V + V GT , (15)

which is depicted diagrammatically in Fig. 1. Note that, in the case of K̄−p
scattering, this is a coupled-channel equation involving ten intermediate states,
namely K−p, K̄0n, π0Λ, π+Σ−, π0Σ0, π−Σ+, ηΛ, ηΣ0, K+Ξ− and K0Ξ0.
The loop operator G stands for the diagonal intermediate meson-baryon (MB)
propagator and V is a suitable MB →M ′B′ transition potential.

A connection with the chiral Lagrangian was established in [3], where the
properties of of the S = −1 meson-baryon sector were studied in a potential

k k’

p p’

k q k’

p p’
+ + + . . .

Fig. 1. Diagrammatic representation of the Bethe-Salpeter equation for K̄N scatter-
ing.
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model [3], such that, in Born approximation, it had the same S-wave scatter-
ing length as the chiral Lagrangian, including both the lowest order and the
momentum dependent p2 terms. No ηΛ, ηΣ or KΞ channels were considered,
on the basis that they were not opened at the K−p threshold. By fitting five
parameters, corresponding to, so far, unknown parameters of the second order
chiral Lagrangian plus the range parameters of the potential, the Λ(1405) reso-
nance was generated as a quasi-bound meson-baryon state and the K−p→MB
cross sections, as well as the available branching rations at threshold, were well
reproduced. Note that being close to a resonance forces one to resort to non-
perturbative approaches, such as summing the infinite Bethe-Salpeter series as
represented diagrammatically in Fig. 1. A recent work [36], which shares many
points with [3], showed that all the strangeness S = −1 meson-baryon scatter-
ing observables near threshold could be reproduced using only the lowest order
Lagrangian in the Bethe-Salpeter equation and one parameter, the cut-off qmax
that regularizes the loop function G. All 10 meson-baryon states that can be
generated from the octet of pseudoscalar mesons and the octet of ground-state
baryons were included, the additional ηΛ state being a quite relevant one. The
success of this method in reproducing the scattering observables is analogous
to that obtained in the meson-meson sector [37]. An explanation was found in
[38] by applying the Inverse Amplitude Method in coupled channels to the same
problem, with the lowest and next-to-lowest order meson-meson Lagrangian.
It was shown that the selection of an appropriate cut off for a particular I, J
channel could minimize the contribution of the next-to-lowest order Lagrangian,
reducing the relevant higher order terms to those iterated by the Bethe-Salpeter
equation with the lowest order Lagrangian, which is the simplified method fol-
lowed in [36,37] (see also the discussion in the review [39]).

The most obvious medium effect is that induced by Pauli-blocking on the
nucleons in the intermediate states. This makes the K̄N interaction density
dependent and modifies, in turn, the K− properties from those in free space.
These effects were already included a long time ago in the context of Brueckner-
type many body theory, using a separable K̄N interaction [29]. Some more recent
works [31,32,33,34,35] take the K̄N interaction from the chiral Lagrangian in S-
wave. However, as seen in the recent work by Tolos et al. [40] which uses the
Bonn K̄N potential model [41], the incorporation of higher angular momenta
has non-negligible effects on the properties of the antikaon at high momentum,
which is of relevance for the analysis of in-medium effects for the K− in heavy-ion
collisions.

In the actual calculations, the effect of Pauli blocking is incorporated by
replacing the free nucleon propagator in the loop function G for intermediate
K̄N states by an in-medium one of the type

A(
√
s− q0,−q, ρ) =

1− n(qlab)√
s− q0 − E(−q ) + iε

+
n(qlab)√

s− q0 − E(−q )− iε
, (16)

where n(qlab) is the occupation probability of a nucleon of momentum qlab in
the lab frame.
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The most spectacular consequence of the Pauli principle is that the blocking
of intermediate states shifts the resonance to higher energy. This changes the K̄N
interaction at threshold from being repulsive in free space to being attractive in
the medium. Therefore, antikaons develop an attractive optical potential which,
incorporated again in the K̄N states of the in-medium scattering equation, may
compensate the upward shifting of these intermediate states induced by Pauli
blocking. This feedback has been recently confirmed by the calculation of Lutz
[34], where the dressing of the antikaon is incorporated in the intermediate loops
in a self-consistent manner. The Λ(1405) resonance remains then unchanged, in
qualitative agreement with what was noted in [30] using a constant mean field
potential for the K̄.

Since the dressing of the antikaon turns out to be so relevant, one might
wonder about dressing the other mesons or baryons that play a role in the K̄N
system. This has been explored in the recent work [35], where a self-consistent
antikaon self-energy is obtained including the dressing of the pions in the πΛ,
πΣ intermediate states, which are the ones that couple strongly to K̄N .

Incorporating the medium modified mesons in the calculation is technically
achieved by replacing the free meson propagator in the loop function G by

D(q0, q, ρ) =
1

(q0)2 − q 2 −m2 −Π(q0, q, ρ)
=
∫ ∞

0
dω 2ω

S(ω, q, ρ)
(q0)2 − ω2 + iε

,

(17)
where Π(q0, q, ρ) is the meson self-energy. The Lehman representation shown
in the second equality of (17) introduces the spectral density, S(ω, q, ρ) =
−ImD(ω, q, ρ)/π, which in the case of free mesons reduces to δ(ω−ω(q ))/2ω(q ).
With these modifications the loop integral becomes

G(P 0,P , ρ) =
∫

|q |<qmax

d3q

(2π)3
M

E(−q )

∫ ∞

0
dω S(ω, q, ρ)

×
{

1− n(qlab)√
s− ω − E(−q ) + iε

+
n(qlab)√

s + ω − E(−q )− iε

}
, (18)

where (P 0,P ) is the total four-momentum in the lab frame and s = (P 0)2−P 2.
Note that the loop function G does-not contain the V and T amplitudes. This
simplification is possible in the chiral approach of [36], where it was shown that
the the amplitudes factorize on-shell out of the loop, since the off shell part could
be absorbed into a renormalization of the coupling constant fπ. These arguments
can not be applied in potential models and a coupled system of integral equations
must be solved. A reasonable simplification is obtained if the dressing of the
antikaon in the loop function G is taken into account via an energy-independent
self-energy, Π(q0 = εqp(q ), q, ρ), evaluated at the quasiparticle energy, εqp(q ),
which is the solution of the in-medium dispersion relation

ε2
qp(q ) = q 2 + m2

K + Π(q0 = εqp(q ), q, ρ) . (19)

This is the prescription followed in [22,40] and amounts to approximate the
actual antikaon spectral function by a symmetric pseudo-Lorentzian peak at the
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quasiparticle energy given by (19). With this assumption, the loop function G
looks like the free one, but replacing the free antikaon energy

√
q 2 + m2

K by the
complex quasiparticle one, εqp(q ).

One might also include the dressing of the baryons by assuming that the
single particle energy E(−q ) in (16) to contain a mean-field potential of the
type U0 × ρ/ρ0, as done in [35,40]. For the nucleon, a reasonable depth value is
UN

0 = −70 MeV, as suggested by numerous calculations of the nucleon potential
in nuclear matter. For the Λ hyperon, one can take UΛ

0 = −30 MeV, as implied
by extrapolating the experimental Λ single particle energies in Λ hypernuclei
to bulk matter [42]. For the Σ hyperon, there is no conclusive information on
the potential. Early phenomenological analyzes [43] and calculations [44] found
the Σ atomic data to be compatible with UΣ

0 ∼ −30 MeV, but more recent
analysis indicate a repulsive potential in the nuclear interior [45]. As shown in
[35], changing the Σ depth from −30 to +30 MeV does not change the results
for the properties of the K− in the medium considerably.
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Fig. 2. Real and imaginary parts of the I = 0 K̄N scattering amplitude as functions
of

√
s for | pK + pN |= 0 and several densities (from [35] and [40]).
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Using the dressed meson-baryon loop in the coupled-channel Bethe-Salpeter
equation, one obtains the in-medium K̄N amplitude Teff(P 0,P , ρ). In Fig. 2 we
compare the free amplitude (ρ = 0, dotted line) in the I = 0, L = 0 channel
with that obtained at nuclear densities ρ = ρ0 = 0.17 fm−1 (solid line) and
ρ = 0.5ρ0 (dot-dashed line). Two different models are shown, that of [35], based
on the lowest order meson-baryon chiral Lagrangian, and that of [40], based on
the potential model of the Bonn group [41]. In spite of the appreciable differences
seen in the free scattering amplitudes, the medium modified ones show the same
qualitative trends. Note also how the real part of the amplitude (upper panels)
at the K−p threshold (

√
s = 1433 MeV) is repulsive in free space and attractive

in the medium. The thick solid line on the left panels show the effect on the
K−p amplitude by dressing the pions in the intermediate states [35].

Most of the available models study the in-medium K̄N amplitude in S-
wave. However, if one aims at extracting the properties of antikaons through the
analysis of heavy-ion collisions, one must keep in mind that they are created
at a finite momentum of around 250 − 500 MeV/c, hence the effect of higher
partial waves might be relevant. The meson-exchange K̄N potential of the Jülich
group [41] is given in partial waves and the main results from a recent study
[40] on the effect of the angular momentum states higher than the commonly
considered L = 0 one will be summarized in the next subsection. From the chiral
perspective, the P-wave amplitudes from the next-to-leading order K̄N chiral
Lagrangian have been identified and, recently, the parameters have been fitted
to reproduce a large amount of low energy data [46]. However, a nuclear medium
application of this model is not available yet.

2.2 In medium K̄ properties

The K̄ self-energy is obtained by summing the in-medium K̄N interaction,
Teff(P 0,P , ρ), over the nucleons in the Fermi sea

ΠK̄(q0, q, ρ) = 2
∑

N=n,p

∫
d3p

(2π)3
n(p )Teff(q0 + E(p ), q + p, ρ) . (20)

Note that a self-consistent approach is required since one calculates the K̄ self-
energy from the effective interaction Teff which uses K̄ propagators which them-
selves include the self-energy being calculated.

A P-wave contribution to the K̄ self-energy coming from the coupling of the
K̄ meson to hyperon-hole excitations can be easily included (if it is not already
contained in Teff) and the expression can be found in [35]. In that work the
pions are also dressed through a pion self-energy that contains one- and two-
nucleon absorption and is conveniently modified to include the effect of nuclear
short-range correlations (see [47] for details). The resulting pion spectral density
in nuclear matter at density ρ = ρ0 is shown in Fig. 3 as a function of the
pion energy for several momenta. The strength is distributed over a wide range
of energies and, as the pion momentum increases, the position of the peak is
increasingly lowered from the corresponding one in free space as a consequence
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of the attractive pion-nuclear potential. Note that, to the left of the peaks, there
appears the typical structure of the 1p1h excitations which give rise to 1p1hΛ
and 1p1hΣ components in the effective K̄N interaction. Although not visible
in the linear scale used in Fig. 3, there is some additional strength at energies
around 300 MeV associated to the excitation of the Δ resonance.
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S
π(q

0 ,q
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−2
]

q=100 MeV/c
q=200 MeV/c
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Fig. 3. Pion spectral density at ρ = ρ0 for several momenta (from [35]).

The spectral function of a K− meson of zero momentum obtained with
the chiral model of [35] is shown in Fig. 4 for various densities: ρ0, ρ0/2 and
ρ0/4. The results in the upper panel include only Pauli blocking effects, i.e.
the nucleons propagate as in (16) but the mesons behave as in free space. At
ρ0/4 one clearly sees two excitation modes. The left one corresponds to the
K− pole branch, appearing at an energy smaller than the kaon mass, mK , due
to the attractive medium effects. The peak on the right corresponds to the
Λ(1405)-hole excitation mode, located above mK because of the shifting of the
Λ(1405) resonance to energies above the K−p threshold. As density increases,
the K− feels an enhanced attraction while the Λ(1405)-hole peak moves to higher
energies and loses strength, a reflection of the tendency of the Λ(1405) to dissolve
in the dense nuclear medium. These features were already observed in [31,33].
The (self-consistent) incorporation of the K̄ propagator in the Bethe-Salpeter
equation softens the effective interaction, Teff , which becomes more spread out
in energies (solid and dot-dashed lines in Fig. 2). The resulting K− spectral
function (middle panel in Fig. 4) shows the displacement of the resonance to
lower energies because, as already noted, the attraction felt by the K̄ meson
lowers the threshold for the K̄N states that had been increased by the Pauli
blocking on the nucleons. This has a compensating effect and the resonance
moves backwards, slightly below its free space value. The K− pole peak appears
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Fig. 4. K− spectral density for zero momentum from the chiral model of ref. [35]

at similar or slightly smaller energies, but its width is larger, due to the strength
of the intermediate K̄N states being distributed over a wider region of energies.
Therefore the K− pole and the Λ(1405)-hole branches merge into one another
and can hardly be distinguished. Finally, when the pion is dressed according
to the spectral function shown in Fig. 3 the effective interaction Teff becomes
even smoother (thick solid lines in Fig. 2). The resulting K− spectral function
is displayed in the bottom panel in Fig. 4. Even at very small densities one can
no longer distinguish the Λ(1405)-hole peak from the K− pole one. As density
increases, the attraction felt by the K− is more moderate and the K− pole peak
appears at higher energies than in the other two approaches. However, more
strength is found at very low energies, especially at ρ0, due to the 1p1h 2p2h
components of the pionic strength, which couple the K̄N state to the 1p1hΣ
and 2p2hΣ ones. It is precisely the opening of the πΣ channel, on top of the
already opened 1p1hΣ and 2p2hΣ ones, which causes a cusp structure to appear
slightly above 400 MeV.
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Fig. 5. K− spectral density for zero momentum using the Bonn K̄N potential (from
[40]).

The calculation of [40] using the Bonn K̄N potential obtains similar results,
which are shown in Fig. 5 for the same three densities. We notice some structure
of the spectral function to the left of the quasiparticle peak at energies of the K̄
around 320− 360 MeV. This is the in-medium reflection of a singularity in the
L = 1, I = 1 free space amplitude around the mass of the Σ baryon induced
by the Σ-pole diagram present in the Bonn K̄N potential [41]. This peak is
therefore indicating the physical excitation of Σh states with antikaon quantum
numbers. The dotted line shows the spectral density at ρ = ρ0 but keeping only
the L = 0 component of the K̄N interaction. In agreement with the behavior
of the complex antikaon potential at zero momentum shown below, we observe
that the location of the quasiparticle peak (driven by the real part) only moves a
few MeV, while the width (driven by the imaginary part) gets reduced by about
30% when including higher partial waves.

One may define a non-relativistic antikaon single-particle potential from the
self-energy at the quasiparticle energy via the relation

UK(q) =
ΠK̄(εqp(q ), q, ρ)

2mK
. (21)

The real and imaginary parts of the antikaon potential at ρ = ρ0, obtained
from the chiral model of ref. [35], are shown in Fig. 6 as function of the antikaon
momentum for two approximations, one in which only the antikaon self-energy
is considered in the intermediate loops (thin solid lines) and another in which
the pions are also dressed (thick solide line). Note that the antikaon potential
obtained when the pions are also dressed has much less structure. This is due
to the smoother in-medium amplitude, but also to the different quasiparticle
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energy at which the antikaon self-energy is evaluated. This quasiparticle energy
is more attractive when only antikaons are dressed and, hence, the amplitude is
explored at lower energy regions, closer to the position of the in-medium Λ(1405)
resonance. Dressing the intermediate pions gives an antikaon potential depth at
zero momentum of −45 MeV. This is about half the attraction of that obtained
with other recent models and approximation schemes [21,26,27,28,32,33], which
give rise to potential depths at the center of the nucleus between −140 and −75
MeV. Results obtained by the model of [40] using the Bonn K̄N potential [41],
where only kaons are dressed, are shown in Fig. 7. In this figure one can also see
the effect of including the higher partial waves of the Bonn K̄N interaction. We
observe that the antikaon nuclear potential at zero momentum receives some
contribution of partial waves higher than L = 0, due to the fact that the K̄
meson interacts with nucleons that occupy states up to the Fermi momentum,
giving rise to finite K̄N relative momenta of up to around 90 MeV/c. Clearly,
the effect of the higher partial waves increases with increasing K̄ momentum,
flattening out the real part of the potential and producing more structure to the
imaginary part. At an antikaon momentum of around 500 MeV/c, the inclusion
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of the higher partial waves practically doubles the size of the antikaon potential
with respect to the S-wave value.

2.3 Kaonic atoms

Since the K− in kaonic atoms are bound with small (atomic) energies, their study
requires the knowledge of the antikaon self-energy at (q0, q) = (mK ,0). The real
and imaginary parts of the isospin averaged in-medium scattering length, defined
as

aeff(ρ) = − 1
4π

M

mK + M

ΠK̄(mK , q = 0, ρ)
ρ

, (22)

obtained from the chiral model of [35], are shown in Fig. 8 as function of the
nuclear density ρ. The change of the real part of the effective scattering length
Re aeff from negative to positive values indicates the transition from a repul-
sive interaction in free space to an attractive one in the medium. As shown by
the dotted line, this transition happens at a density of about ρ ∼ 0.1ρ0 when
only Pauli effects are considered, in agreement with what was found in [31,32].
However, this transition occurs at even lower densities (ρ ∼ 0.04ρ0) when one
considers the self-energy of the mesons in the description, whether one dresses
only the K̄ meson (dashed line) or both the K̄ and π mesons (solid line). The
deviations from the approach including only Pauli blocking or those dressing the
mesons are quite appreciable over a wide range of densities. The thin solid lines
show the results obtained with a repulsive Σ potential depth of +30 MeV. The
deviations from the thick solid line, obtained for an attractive potential depth
of −30 MeV, are smaller than 10% and only show up at higher densities.

The implications of the density dependent scattering length displayed in
Fig. 8 on kaonic atoms have been recently analyzed [48] in the framework of a
local density approximation, which amounts to replace the nuclear matter den-
sity ρ by the density profile ρ(r) of the particular nucleus. The results displayed
in Fig. 9 show that both the energy shifts and widths of kaonic atom states agree
well with the bulk of experimental data [49].

Reproducing kaonic atom data with this moderately attractive antikaon
nucleus potential of −45 MeV is in contrast with the depth of around −200 MeV
obtained from a best fit to K− atomic data with a phenomenological potential
that includes an additional non-linear density dependent term [16]. A hybrid
model, combining a relativistic mean field approach in the nuclear interior and
a phenomenological density dependent potential at the surface that is fitted to
K− atomic data, also favors a strongly attractive K− potential of depth −180
MeV [50]. On the other hand, the early Brueckner-type calculations of [29] also
obtained a shallow K−-nucleus potential, of the order of −40 MeV at the center
of 12C, and predicted reasonably well the K− atomic data available at that
time. Acceptable fits to kaonic atom data have also been obtained using charge
densities and a phenomenological Teffρ type potential with a depth of the order
of −50 MeV in the nuclear interior [51], which goes down to −80 MeV, when
matter densities are used instead [16].
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A clarifying quantitative comparison of kaonic atom results obtained with
various K−-nucleus potentials can be found in [52]. There, the reasonable re-
production of data obtained with the chiral antikaon-nucleus potential of [35],
shown in Fig. 9, is quantified with a χ2/d.o.f. = 3.8. This potential is then
modified by an additional phenomenological piece, linear in density, which is
fitted to the known data and is able to bring the agreement to the level of
χ2/d.o.f. = 1.6. This results into a final potential which is slightly more attrac-
tive (−50 MeV at ρ0) and has a reduced imaginary part by about a factor 2. The
work [52] reemphasizes that kaonic atoms only explore the antikaon potential
at the surface of the nucleus. Therefore, although all models predict attraction
for the K−-nucleus potential, the precise value of its depth at the center of the
nucleus, which has important implications for the occurrence of kaon conden-
sation, is still not known. It is then necessary to gather more data that could
help in disentangling the properties of the K̄ in the medium. Apart from the
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Fig. 9. Energy shifts and widths of kaonic atom states (from [48]). The experimental
data are taken from the compilation given in [49].

valuable information that can be extracted from the production of K− in heavy-
ion collisions, one could also measure deeply bound kaonic states, which have
been predicted to be narrow [48,52,53] and could be measured in (K−, γ) [48]
or (K−, p) reactions [54,55].

3 Kaons in neutron stars

Kaon condensation has first thought to be irrelevant for neutron stars as their
mass has to be lowered so drastically to appear in beta-stable neutron star matter
[57]. Nevertheless, as demonstrated in the last sections, the in-medium effects
for the kaons, especially for the K− can be quite pronounced which reopened the
issue of kaon condensation for neutron stars [5]. The topic has been extensively
discussed in the literature over the last years (see e.g. [6,7,8,9,10,11,12,13,14]). In
all these approaches, the antikaon-nucleon interaction has been parameterized
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in effective field theoretical models which were guided by the investigations of
the last sections. So far, a consistent coupled channel calculation incorporating
a realistic nucleon-nucleon interactions as well as kaon-nucleon interactions has
not been performed due to the complexity of the problem. We will outline in this
section, how one can parameterize the antikaon-nucleon interaction in a simple
field theoretical model and apply it to the equation of state (EoS) of beta-stable
matter and neutron stars.

3.1 Effective model of kaon-nucleon interactions

In neutron star matter, only baryon number and charge are conserved. Hence,
kaons or antikaons, as well as hyperons, can appear inside neutron stars by
strangeness changing processes. The onset of the appearance of the negatively
charged K− is given by the equality of the effective antikaon chemical potential
(or effective antikaon energy) in matter with the electrochemical potential

ωK = μK− = μe . (23)

Then processes like

e− → K− + νe n→ p + K− (24)

are energetically allowed. The K− is replacing electrons from the Fermi surface
or equivalently transforming neutrons to protons. The K− as a boson will form a
condensate with zero momenta as the s-wave interaction with nucleons is attrac-
tive. The presence of the zero momentum K−’s, compared to the high momenta
electrons, will lower the overall energy of the system. Also, the increase in the
proton fraction will lower the isospin asymmetry of the matter. As the nuclear
asymmetry term is strongly repulsive, K− can again lower the energy of the
system substantially.

Guided by the discussion of the previous sections, we write down now an
effective Lagrangian which models the kaon-nucleon interaction:

LK = D∗
μK

∗DμK −m∗
K

2K∗K (25)

where the vector fields are coupled minimally

Dμ = ∂μ + igωKVμ + igρKτKRμ (26)

and the effective mass of the kaon is defined as a linear shift of the mass term
by the scalar field

m∗
K = mK − gσKσ . (27)

The form of the interaction as mediated by a scalar (σ) and vector (Vμ, Rμ)
meson fields is in close analogy to the relativistic mean-field model which will
be used for the baryon-baryon interactions. We will focus now on the K−. The
combined equations of motion for the meson fields including nucleons

m2
σσ + bmN (gσNσ)2 + c (gσNσ)3 = gσNρs + gσKρK



192 A. Ramos, J. Schaffner-Bielich, and J. Wambach

m2
ωV0 = gωN (ρp + ρn)− gωKρK

m2
ρR0,0 = gρN (ρp − ρn)− gρKρK (28)

has a certain simple structure. The scalar densities for nucleons and K− act as
a source term for the scalar field. The vector densities are conserved and build
source terms for the corresponding vector fields. The different signs for the source
terms of the isospin dependent R0 field reflect the isospin of the hadron. Note,
that the kaon scalar and vector density are equal in our approach as the kaon
has spin zero, contrary to the nucleon. The dispersion relation for the K− at
zero momentum is given by

ωK = mK − gσKσ − gωKV0 − gρKR0,0 . (29)

The solution of the equations of motion provides then an EoS of the form

ε = εN + εK + εe,μ (30)
p = pN + pe,μ . (31)

Note, that the direct contribution of the kaons to the pressure vanishes, as it
involves a Bose condensate. The energy contribution of the K− reads

εK = m∗
KρK . (32)

Now there are two parameters for the K−, which have to be fixed. For the vector
coupling constants, we use simple quark counting rules and set

gωK =
1
3
gωN and gρK = gρN . (33)

The scalar coupling constant is fixed to the optical potential of the K− at ρ0:

UK(ρ0) = −gσKσ(ρ0)− gωKV0(ρ0) (34)

and will be varied between −140 and −80 MeV according to the results of the
coupled channel calculations of the previous section.

3.2 Phase transition to kaon condensation

The phase transition to kaon condensed matter can be in principle of any order.
If the phase transition is of first order, then Gibbs’ general condition for two
phases have to be applied. As there are two conserved charges for cold neutron
star matter, baryon number and charge, the Gibbs conditions read

pI = pII , μI
B = μII

B , μI
e = μII

e (35)

in kinetic and chemical equilibrium. Note, that the standard Maxwell construc-
tion can not be used, as it ensures to conserve only one chemical potential.

For a sufficiently large attraction for the K−, UK(ρ0) > −80 MeV, we find
that the phase transition is indeed of first order. Figure 10 shows the EoS of
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neutron star matter with a kaon condensate. The pure charge neutral nucleon
phase is shown by the solid line. The pure charge neutral kaon condensed phase
by the dotted lines. A mechanical instability of the latter phase is apparent for
some density range as the slope gets negative, dp/dε < 0. The Gibbs construction
for the mixed phase, plotted by the dash-dotted lines, is mechanical stable and is
a continuously rising function of the density. The mixed phase starts at a lower
density compared to the onset of the pure charge neutral kaon condensed phase
and can extend to rather large densities. The phase transition turns out to be of
second order for small values of the optical potential, i.e. UK(ρ0) ≥ −80 MeV.
For both orders of the phase transition, the EoS is considerably softened due to
kaon condensation.

If a mixed phase is formed, there is a new degree of freedom to maximize
the pressure: the redistribution of charge between the two phases [56]. There are
three possible solutions for the charge density: i) the pure nucleon phase with
qK = 0, ii) the pure kaon condensed phase with qN = 0, and iii) the mixed phase
with

qtotal = (1− χ)qN (μB , μe) + χqK(μB , μe) = 0 , (36)

where χ is the volume fraction of the two phases. The total global charge is still
zero, while the two phases of the mixed phase can have very large local electric
(opposite) charge densities.
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The charge density in the mixed phase as a function of the volume fraction is
plotted in Fig. 11. The nucleon phase starts with zero charge density. Its charge
density is getting positive in the mixed phase, as it is energetically favoured to
have about equal amounts of protons and neutrons in matter. The positive charge
of the nucleon phase is compensate by the kaon condensed phase. The latter
phase starts at large negative charge density and stops at zero charge density at
the end of the mixed phase. For larger density, the pure neutrally charged kaon
condensed phase prevails. The charge is distributed between the two phases in
the mixed phase, and geometrical (charged) structures appear. These structures
are similar to those discussed for the liquid-gas phase transition in the neutron
star crust [58] and for the phase transition to deconfined matter [56].

In the selfconsistent approach used here for nucleons and kaons, the crucial
ingredience for calculating the geometric structures, the surface tension between
the two phases, can be calculated within the model [59,60]. The resulting sizes
of the geometric structures are summarized in Fig. 12. First, bubbles of the
kaon condensed phase appear. Then at larger density, here lower radii, the kaon
condensed phase forms rods, then slabs. In the core, the situation reverses and
nucleonic slabs form which are immersed in the kaon condensed phase. If one
increases the density even further, nucleonic rods, then drops will form ending
finally in a pure kaon condensed phase. For the EoS used in Fig. 12, the maximum
density reached inside the neutron star is too low to achieve these phases. The
size of the structures is around 10 fm and the separation 20–30 fm, not far from
the size of heavy nuclei of say 7 fm. Compared to the size of the neutron star,
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Fig. 12. Sizes of the geometrical structures appearing in the mixed phase (from [60])

the mixed phase structures are microscopic and will effect transport and cooling
phenomena inside the neutron star (see e.g. [59,61]).

One might wonder, why there exists a phase boundary for the nucleons, as
they are present in both phases. In the relativistic mean-field model, the mass of
the nucleons is shifted in dense matter due to the interaction with the scalar field.
In the calculation for the mixed phase, it turns out, that Gibbs conditions are
satisfied for different field configurations, i.e. for different values of the effective
nucleon masses in the two phases. The difference of the effective nucleon masses
is about a factor two in the mixed phase. Hence, the nucleons in the two phases
are indeed distinguishable.

The appearance of the kaon condensed phase has certain impacts also on the
global properties of the neutron star. As kaon condensation softens the EoS, the
maximum mass of neutron stars will be reduced (see e.g. [9]). Figure 13 shows
the mass-radius relation for a neutron star with a kaon condensed phase for
different strengths of the kaon-nucleon interactions. For moderate attraction for
the K−, the maximum mass of a neutron stars drops while the minimum radius
increases slightly. For larger attraction, a considerable fraction of the neutron
star is in the mixed phase and the maximum mass as well as the minimum radius
decreases. For the largest attraction studied here, the minimum radius changes
drastically from values of 12 km without K− condensation to 8 km with K−

condensation. The maximum mass of the neutron star is lowered from 1.8 M�
to 1.4 M�. Note, that there are no instabilities for the Gibbs construction of the
mixed phase. The Maxwell construction, shown by dashed lines, is mechanically
unstable for some intermediate ranges of the radius.
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Fig. 13. The mass-radius relation of a neutron star with kaon condensation for different
values of the K− optical potential at ρ0 (taken from [14])

3.3 Effects of hyperonization on kaon condensation

Hyperons may appear around twice normal nuclear density in beta-stable matter
[57]. In the last few years, this picture has gained support by various model cal-
culations. Hyperons (either the Λ or the Σ−) are present in neutron star matter
at 2ρ0 within effective nonrelativistic potential models [62], the Quark-Meson
Coupling Model [63], extended Relativistic Mean-Field approaches [11,12], Rel-
ativistic Hartree-Fock [64], Brueckner-Hartree-Fock [65,66], and chiral effective
Lagrangians [67]. Whether the Λ or the Σ− appears first, depends sensitively on
the chosen isospin interaction of the Σ hyperons. In any case, these two hyperons
appear around (2–4)ρ0 in the model calculations listed above, which is before
kaon condensation sets in.

In most of the modern EoS, the interaction between the baryons is mediated
by meson exchange. The nucleon parameters are fitted to properties of nuclei
or nuclear matter. Some of the hyperon coupling constants, say the ones to the
scalar field, are fixed by the optical potential as extracted from hypernuclear data
[68] (see also our discussion in the previous section). The quark model (SU(6)
symmetry) can be used to constrain the hyperon coupling constants to the vector
fields. The latter choice is often relaxed. While the Λ coupling constants, and
to some extend the ones for the Ξ, can be constrained by hypernuclear data,
the ones for the Σ hyperons can not. Studies of Σ− atoms indicate a repulsive
potential for the Σ in nuclei [69]. Another point of uncertainty is related with
the interaction between hyperons themselves. Apart from the ΛΛ interaction,
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nothing is known about the hyperon-hyperon interaction. Only a few calculations
have addressed this issue for neutron star matter so far [12,62,66].

Fig. 14. The particle fractions in neutron star matter versus the relative baryon density
u = ρ/ρ0. The three panels correspond to different choices for the hyperon coupling
constants (from [11])

A representative hyperon population as a function of density is plotted in
Fig. 14. The three panels shown corresponds to three different choices of the
hyperon vector coupling constants. In the upper panel, the ratio of all hyperon
vector coupling constants to the one of the nucleon is set to about xωY = 2/3.
This is the ratio predicted by the quark model or SU(6) symmetry for the cou-
pling constant to the ω meson for the Λ and the Σ; for the Ξ it would be, of
course, only 1/3. The Σ− and the Λ appear at a little bit less than 2ρ0. The
heavier Ξ hyperon is present in matter at 3.3ρ0. If one arbitrarily increases the
vector coupling constant of the Σ meson to be equal to the one for nucleons,
xωΣ = 1, the Σ hyperons do not appear (see middle panel). The critical density
for the onset of the Ξ− is then shifted to 2.2ρ0, so that the Ξ− takes over to
some extent the role of the Σ−. If the corresponding ratio for the Ξ is also in-
creased to xωΞ = 1, also the Ξ population vanishes (lower panel). The critical
density for the Λ is unchanged. Only for the latter case, a kaon condensed phase
emerges at 3.6ρ0 in these model calculations.
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Note, that the electron fraction decreases, once hyperons are in the system
[57]. This means, that the electron chemical potential does not only saturate but
is substantially lowered when hyperons are present in matter. The obvious reason
is, that the negative charge needed to cancel the positive charge of the protons
is carried now by the negatively charged hyperons instead. Another reason is,
that any appearance of a new degree of freedom in matter lowers the overall
Fermi momenta of nucleons and leptons, be it charged or not. The latter effect is
apparent from the lowest panel of Fig. 14, where just the presence of the neutral Λ
hyperon lowers the electron fraction. The general feature, that hyperons lower the
electrochemical potential, has been restressed by Glendenning most recently [70].
As the onset of K− condensation is given by the equality of the effective energy
of the K− and the electrochemical potential, it is evident, that the presence of
hyperons at least increase the critical density for kaon condensation. Glendenning
discussed even before the work of Kaplan and Nelson [5] the destructive effect
of hyperons for the appearance of kaon condensation in neutron stars [57]. In
more recent works, the in-medium effects for kaons were incorporated in the
model calculations including hyperons, and it was found that the onset for kaon
condensation is shifted to higher density [11] or does not take place at all [12]
(see below).

The hyperonization effects the mass-radius relation for neutron stars. As
for any new degree of freedom, the EoS is also softened by hyperons. The max-
imum possible mass of a neutron star can be lowered by hyperons by about
(0.4–0.7)M� [68,11]. According to the work of [11], kaon condensation without
hyperons reduce the maximum mass by only (0.1–0.2)M� and the combined
effect of kaons and hyperons shift the maximum mass down by about 0.5M�.
So, the main effect in the reduction of the maximum mass stems from the hy-
peron degree of freedom. We note, that the reduction of the maximum mass
due to kaons only is rather model dependent. Other estimates find changes up
to ΔM = 0.4M� due to kaon condensation [9,14], but hyperons are ignored in
these latter calculations.

There can be an additional hindrance for kaon condensation which is related
to the hyperon-hyperon interaction. The vector meson φ controls the interaction
between hyperons at large hyperon densities [12]. The inclusion of the φ meson
models also the kaon-hyperon interaction. As the φ meson couples solely to
strange quarks in SU(6) symmetry, it is repulsive for hyperons and the K− and
attractive for the K+. For neutron star matter with hyperons, the φ meson
exchange can saturate the effective energy of the K−, so that kaon condensation
can not happen at all. This effect is depicted in Fig. 15 as a function of density.
The effective energy of the K− drops at low density while the one for the K+

increases. At 2ρ0, when hyperons are getting populated, the effective energy of
the K− saturates as the K− feels the repulsive contribution from the hyperons.
On the contrary, the K+ energy starts to drop at this density as the K+-hyperon
interaction is attractive. The lower curves show the electrochemical potential
which has to be crossed by the effective K− energy for the K− to be present. As
the electrochemical potential as well as the K− effective energy saturate at large



Kaon Condensation in Neutron Stars 199

0 1 2 3 4 5 6 7 8 9 10
/ 0

0

100

200

300

400

500

600

700

800

K
ao

n
en

er
gy

(M
eV

)

GL85, off-shell
GL85, on-shell
TM2, off-shell
TM2, on-shell
TM1, off-shell
TM1, on-shell

K+

K-

- e

Fig. 15. The effective energy of kaons as well as the electrochemical potential versus
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density due to the presence of hyperons, that crossing does not happen and kaon
condensation is prevented in this scenario.

4 Summary and Outlook

We have discussed the elementary kaon-nucleon interaction as derived from scat-
tering data and the in-medium changes of the K− as deduced from kaonic atoms.
Various coupled channel calculations using chiral effective interactions or the bo-
son exchange model with higher order partial waves and their results for the K−

properties in dense matter have been reviewed. The extracted range of the opti-
cal potential has been used to study the phase transition to kaon condensation in
neutron star matter. We outlined the effects of a first order phase transition due
to the presence of structures in the mixed phase. Consequences for the global
properties of neutron stars, i.e. a reduced maximum mass and minimum radius,
have been addressed. Finally, we examined the rôle of hyperons on the onset of
kaon condensation in neutron stars.

It is clear from our review, that the discussion about kaon condensation is
far from being complete at present. The topic is a challenge both for experi-
mentalists as well as for theorists, demonstrating a growing interplay between
traditional nuclear physics, heavy-ion physics, and astrophysics. For example,
the importance of p-wave interactions also for cold, dense neutron star matter
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has been stressed, but further work is needed in that direction. Especially, the
precise value of the optical potential of the K− is a crucial ingredience for the
neutron star matter calculation and needs to be pinned down more precisely, be
it by the experimental study of deep lying levels in kaonic atoms, subthreshold
kaon production in heavy-ion collisions at GSI, or by the mass-radius measure-
ment of neutron stars.

The inclusion of hyperons for the equation of state is certainly a necessary
one, but there are only a few works which have been devoted to this issue. In
particular, the hyperon-hyperon interaction as well as the kaon-hyperon interac-
tion can be important for the onset of kaon condensation and could be addressed
by e.g. a chiral SU(3) symmetric model. A consistent calculation, incorporating
realistic kaon-baryon as well as a baryon-baryon interactions on the same basis
is still missing.

Last but not least, we point out, that kaon condensation can have impacts
on other facets of neutron stars, like the evolution of proto-neutron stars and
the deconfinement phase transition to quark matter. Concerning the latter point,
the appearance of both, a kaon condensed phase and a quark matter phase, will
lead to a triple point of strongly interacting matter inside a neutron star. At
this point, the three phases, the normal hadronic, the kaon condensed and the
quark matter phase, are in equilibrium. Beyond that point, the kaon condensed
phase and the quark matter phase are forming a mixed phase. The presence of
this triple point might have interesting implications for transport phenomena in
neutron stars.
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Abstract. We review recent work on the phase structure of QCD at very high baryon
density. We introduce the phenomenon of color superconductivity and discuss how the
quark masses and chemical potentials determine the structure of the superfluid quark
phase. We comment on the possibility of kaon condensation at very high baryon density
and study the competition between superfluid, density wave, and chiral crystal phases
at intermediate density.

1 Color Superconductivity

In the interior of compact stars matter is compressed to densities several times
larger than the density of ordinary matter. Unlike the situation in relativistic
heavy ion collisions, these conditions are maintained for essentially infinite pe-
riods of time. Also, compared to QCD scales, matter inside a compact star is
quite cold. At low density quarks are confined, chiral symmetry is broken, and
baryonic matter is described in terms of neutrons and protons as well as their
excitations. At very large density, on the other hand, we expect that baryonic
matter is described more effectively in terms of quarks rather than hadrons. As
we shall see, these quarks can form new condensates and the phase structure of
dense quark matter is quite rich.

At very high density the natural degrees of freedom are quark excitations
and holes in the vicinity of the Fermi surface. Since the Fermi momentum is large,
asymptotic freedom implies that the interaction between quasi-particles is weak.
In QCD, because of the presence of unscreened long range gauge forces, this is
not quite true. Nevertheless, we believe that this fact does not essentially modify
the argument. We know from the theory of superconductivity the Fermi surface
is unstable in the presence of even an arbitrarily weak attractive interaction.
At very large density, the attraction is provided by one-gluon exchange between
quarks in a color anti-symmetric 3̄ state. High density quark matter is therefore
expected to be a color superconductor [1,2,3,4].

Color superconductivity is described by a pair condensate of the form

φ = 〈ψTCΓDλCτFψ〉. (1)

Here, C is the charge conjugation matrix, and ΓD, λC , τF are Dirac, color, and
flavor matrices. Except in the case of only two colors, the order parameter can-
not be a color singlet. Color superconductivity is therefore characterized by the
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breakdown of color gauge invariance. As usual, this statement has to be inter-
preted with care because local gauge invariance cannot really be broken. Never-
theless, we can study gauge invariant consequences of a quark pair condensate,
in particular the formation of a gap in the excitation spectrum.

In addition to that, color superconductivity can lead to the breakdown of
global symmetries. We shall see that in some cases there is a gauge invariant order
parameter for the U(1) of baryon number. This corresponds to true superfluidity
and the appearance of a massless phonon. We shall also find that for Nf > 2 color
superconductivity leads to chiral symmetry breaking and that quark matter may
support a kaon condensate. Finally, as we move to stronger coupling we find that
other forms of order can compete with color superconductivity and that quark
matter may exist in the form of chiral density waves or chiral crystals.

2 Phase Structure in Weak Coupling

2.1 QCD with two flavors

In this section we shall discuss how to use weak coupling methods in order
to explore the phases of dense quark matter. We begin with what is usually
considered to be the simplest case, quark matter with two degenerate flavors,
up and down. Renormalization group arguments suggest [5,6,7], and explicit
calculations show [8,9], that whenever possible quark pairs condense in an s-
wave. This means that the spin wave function of the pair is anti-symmetric.
Since the color wave function is also anti-symmetric, the Pauli principle requires
the flavor wave function to be anti-symmetric, too. This essentially determines
the structure of the order parameter [10,11]

φa = 〈εabcψbCγ5τ2ψ
c〉. (2)

This order parameter breaks the color SU(3)→ SU(2) and leads to a gap for up
and down quarks with two out of the three colors. Chiral and isospin symmetry
remain unbroken.

We can calculate the magnitude of the gap and the condensation energy
using weak coupling methods. In weak coupling the gap is determined by lad-
der diagrams with the one gluon exchange interaction. These diagrams can be
summed using the gap equation [12,13,14,15,16]

Δ(p0) =
g2

12π2

∫
dq0

∫
d cos θ

( 3
2 − 1

2 cos θ
1− cos θ + G/(2μ2)

(3)

+
1
2 + 1

2 cos θ
1− cos θ + F/(2μ2)

)
Δ(q0)√

q2
0 + Δ(q0)2

.

Here, Δ(p0) is the frequency dependent gap, g is the QCD coupling constant and
G and F are the self energies of magnetic and electric gluons. This gap equation
is very similar to the BCS gap equations that describe nuclear superfluids. The
main difference is that because the gluon is massless, the gap equation contains
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a collinear divergence for cos θ → 1. In a dense medium the collinear diver-
gence is regularized by the gluon self energy. For q → 0 and to leading order in
perturbation theory we have

F = 2m2, G =
π

2
m2 q0
|q| , (4)

with m2 = Nfg
2μ2/(4π2). In the electric part, m2

D = 2m2 is the familiar Debye
screening mass. In the magnetic part, there is no screening of static modes, but
non-static modes are modes are dynamically screened due to Landau damping.

We can now perform the angular integral and find

Δ(p0) =
g2

18π2

∫
dq0 log

(
bμ

|p0 − q0|

)
Δ(q0)√

q2
0 + Δ(q0)2

, (5)

with b = 256π4(2/Nf )5/2g−5. This result shows why it was important to keep the
frequency dependence of the gap. Because the collinear divergence is regulated
by dynamic screening, the gap equation depends on p0 even if the frequency is
small. We can also see that the gap scales as exp(−c/g). The collinear divergence
leads to a gap equation with a double-log behavior. Qualitatively

1 ∼ g2

18π2

[
log
( μ

Δ

)]2
, (6)

from which we conclude that Δ ∼ exp(−c/g). The approximation (6) is not
sufficiently accurate to determine the correct value of the constant c. A more
detailed analysis shows that the gap on the Fermi surface is given by

Δ0 � 512π4(2/Nf )5/2μg−5 exp
(
− 3π2
√

2g

)
. (7)

We should emphasize that, strictly speaking, this result contains only an estimate
of the pre-exponent. It was recently argued that wave function renormalization
and quasi-particle damping give O(1) contributions to the pre-exponent which
substantially reduce the gap [16].

For chemical potentials μ < 1 GeV, the coupling constant is not small and
the applicability of perturbation theory is in doubt. If we ignore this problem
and extrapolate the perturbative calculation to densities ρ � 5ρ0 we find gaps
Δ � 100 MeV. This result may indeed be more reliable than the calculation on
which it is based. In particular, we note that similar results have been obtained
using realistic interactions which reproduce the chiral condensate at zero baryon
density [10,11].

We can also determine the condensation energy. In weak coupling the grand
potential can be calculated from [4]

Ω =
1
2

∫
d4q

(2π)4
{
−tr [S(q)Σ(q)] + tr

[
S−1

0 (q)S(q)
]}

, (8)
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where S(q) and Σ(q) are the Nambu-Gorkov propagator and proper self energy.
Using the propagator in the superconducting phase we find

ε = 4
μ2

4π2Δ
2
0 log

(
Δ0

μ

)
, (9)

where the factor 4 = 2Nf comes from the number of condensed species. Using
Δ0 � 100 MeV and μ � 500 MeV we find ε � −50 MeV/fm3. This shows that
the condensation energy is only a small O(Δ2/μ2) correction to the total energy
density of the quark phase. We note that the result for the condensation energy
agrees with BCS theory. The same is true for the critical temperature which is
given by Tc = 0.56Δ0.

2.2 QCD with three flavors: Color-Flavor-Locking

If quark matter is formed at densities several times nuclear matter density we
expect the quark chemical potential to be larger than the strange quark mass.
We therefore have to determine the structure of the superfluid order parameter
for three quark flavors. We begin with the idealized situation of three degener-
ate flavors. From the arguments given in the last section we expect the order
parameter to be color and flavor anti-symmetric matrix of the form

φab
ij = 〈ψa

i Cγ5ψ
b
j〉. (10)

In order to determine the precise structure of this matrix we have to extremize
grand canonical potential. We find [17,18]

Δab
ij = Δ(δa

i δ
b
j − δb

i δ
a
j ), (11)

which describes the color-flavor locked phase proposed in [19]. Both color and
flavor symmetry are completely broken. There are eight combinations of color
and flavor symmetries that generate unbroken global symmetries. The symmetry
breaking pattern is

SU(3)L × SU(3)R × U(1)V → SU(3)V . (12)

This is exactly the same symmetry breaking that QCD exhibits at low density.
The spectrum of excitations in the color-flavor-locked (CFL) phase also looks
remarkably like the spectrum of QCD at low density [20]. The excitations can
be classified according to their quantum numbers under the unbroken SU(3),
and by their electric charge. The modified charge operator that generates a true
symmetry of the CFL phase is given by a linear combination of the original charge
operator Qem and the color hypercharge operator Q = diag(−2/3,−2/3, 1/3).
Also, baryon number is only broken modulo 2/3, which means that one can
still distinguish baryons from mesons. We find that the CFL phase contains an
octet of Goldstone bosons associated with chiral symmetry breaking, an octet of
vector mesons, an octet and a singlet of baryons, and a singlet Goldstone boson
related to superfluidity. All of these states have integer charges.
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With the exception of the U(1) Goldstone boson, these states exactly match
the quantum numbers of the lowest lying multiplets in QCD at low density. In
addition to that, the presence of the U(1) Goldstone boson can also be under-
stood. The U(1) order parameter is 〈(uds)(uds)〉. This order parameter has the
quantum numbers of a 0+ ΛΛ pair condensate. In Nf = 3 QCD, this is the most
symmetric two nucleon channel, and a very likely candidate for superfluidity in
nuclear matter at low to moderate density. We conclude that in QCD with three
degenerate light flavors, there is no fundamental difference between the high
and low density phases. This implies that a low density hyper-nuclear phase
and the high density quark phase might be continuously connected, without an
intervening phase transition.

2.3 QCD with one flavor: Color-Spin-Locking

In this section we shall study superfluid quark matter with only one quark flavor.
As we will discuss in more detail in the next section, our results are relevant to
quark matter with two or three flavors. This is the case when the Fermi surfaces
of the individual flavors are too far apart in order to allow for pairing between
different species.

If two quarks with the same flavor are in a color anti-symmetric wave func-
tion then there combined spin and spatial wave function cannot be antisymmet-
ric. This means that pairing between identical flavors has to involve total angular
momentum one or greater. The simplest order parameters are of the form

Φ1 = 〈ε3abψaCγψb〉, Φ2 = 〈ε3abψaCq̂ψb〉. (13)

The corresponding gaps can be determined using the methods introduced in
section 2.1. We find Δ(Φ1,2) = exp(−3c1,2)Δ0 with c1 = −1.5 and c2 = −2 [8,9].
While the natural scale of the s-wave gap is Δ = 100 MeV, the p-wave gap is
expected to be less than 1 MeV.

The spin one order parameter (13) is a color-spin matrix. This opens the
possibility that color and spin degrees become entangled, similar to the color-
flavor locked phase (11) or the B-phase of liquid 3He. The corresponding order
parameter is

ΦCSL = δa
i 〈εabcψbC (cos(β)q̂i + sin(β)γi)ψc〉, (14)

where the angle β determines the mixing between the two types of condensates
shown in (13). In reference [9] we showed that the color-spin locked phase (14)
is favored over the “polar” phase (13).

In the color-spin locked phase color and rotational invariance are broken,
but a diagonal SO(3) survives. As a consequence, the gap is isotropic. There are
no gapless modes except if β takes on special values. The parameter β is sensitive
to the quark mass and to higher order corrections. In the non-relativistic limit
we find β = π/4 whereas in the ultra-relativistic limit β = π/2.



208 T. Schäfer and E. Shuryak

3 The Role of the Strange Quark Mass
and the Electron Chemical Potential

So far, we have only considered the case of two or three degenerate quark flavors.
In the real world, the strange quark is significantly heavier than the up and
down quarks. Also, in the interior of a neutron star, electrons are present and
the chemical potentials for up and down quarks are not equal.

The role of the strange quark mass in the high density phase was studied
in [21,22]. The main effect is a purely kinematic phenomenon that is easily
explained. The Fermi surface for the strange quarks is shifted by δpF = μ −
(μ2 − m2

s)
1/2 � m2

s(2μ) with respect to the Fermi surface of the light quarks.
The condensate involves pairing between quarks of different flavors at opposite
points on the Fermi surface. But if the Fermi surfaces are shifted, then the pairs
do not have total momentum zero, and they cannot mix with pairs at others
points on the Fermi surface. If the system is superfluid then the Fermi surface is
smeared out over a range Δ. This means that pairing between strange and light
quarks can take place as long as the mismatch between the Fermi momenta is
smaller than the gap,

Δ >
m2

s

2μ
. (15)

This conclusion is supported by a more detailed analysis [21,22]. Since flavor
symmetry is broken, we allow the 〈ud〉 and 〈us〉 = 〈ds〉 components of the CFL
condensate to be different. The Nf = 2 phase corresponds to 〈us〉 = 〈ds〉 = 0.
We find that there is a first order phase transition from the CFL to the Nf = 2
phase, and that the critical strange quark mass is in rough agreement with the
estimate (15).

For densities ρ � (5 − 10)ρ0 the critical strange quark mass is close to
physical mass of the strange quark. It is therefore hard to predict with certainty
whether superconducting strange quark matter in the interior of a neutron star
is in the color-flavor locked phase. Neutron star observations may help to answer
the question. In the CFL phase all quarks have large gaps, whereas in the un-
locked phase up and down quarks of the first two colors have large gaps, strange
quarks have a small gap, and the up and down quarks of the remaining color
have tiny gaps, or may not be gapped at all.

The effects of a non-zero electron chemical potential was studied in [23].
If the electron chemical potential exceeds the gap in the up-down sector then
up and down quarks cannot pair. In this case, the up and down quarks pair
separately, and with much smaller gaps, in the one flavor phase discussed in
section 14. Between the phases with 〈ud〉 and 〈uu〉, 〈dd〉 pairing there is a small
window of electron chemical potentials where inhomogeneous superconductivity
takes place [24].
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4 Kaon Condensation

The low energy properties of dense quark matter are determined by collective
modes. In the color-flavor locked phase these modes are the phonon and the
pseudoscalar Goldstone bosons , the pions, kaons and etas. Some time ago, it
was suggested that pions [25,26,27] or kaons [28,29] might form Bose condensates
in dense baryonic matter. The proposed critical densities were close to nuclear
matter density in the case of pion condensation, and several times nuclear mat-
ter density in the case of kaon condensation. Since mesonic modes persist in the
color-flavor-locked phase of quark matter, we can now revisit the issue of Gold-
stone boson condensation [30]. In particular, we shall be able to use rigorous
weak coupling methods in order to address the possibility of Bose condensation
in dense matter.

Our starting point is the effective lagrangian for the pseudoscalar Goldstone
in dense matter [31,32]

Leff =
f2

π

4
Tr
[
∂0Σ∂0Σ

† + v2
π∂iΣ∂iΣ

†]− c
[
det(M)Tr(M−1Σ) + h.c.

]
. (16)

Here, Σ ∈ SU(3) is the Goldstone boson field, vπ is the velocity of the Gold-
stone modes and M = diag(mu,md,ms) is the quark mass matrix. The effective
description is valid for energies and momenta below the scale set by the gap,
ω, q 	 Δ. The low energy constants can be determined in weak coupling per-
turbation theory. The result is v2

π = 1/3 and [32,33,34,35,36]

f2
π =

21− 8 log(2)
18

μ2

2π2 , (17)

c =
3Δ2

2π2 ·
2
f2

π

. (18)

We can now determine the masses of the Goldstone bosons

mπ± = c(mu + md)ms, mK± = cmd(mu + ms). (19)

This result shows that the kaon is lighter than the pion. This can be under-
stood from the fact that, at high density, it is more appropriate to think of the
interpolating field Σ as

Σij ∼ εiklεjmnψ̄L,kψ̄L,lψR,mψR,n (20)

rather than the more familiar Σij ∼ ψ̄L,iψR,j [31]. Using (20) we observe that
the negative pion field has the flavor structure d̄s̄us and therefore has mass
proportional to (mu +md)ms [32]. Putting in numerical values we find that the
kaon mass is very small, mK− � 5 MeV at μ = 500 MeV and mK− � 1 MeV at
μ = 1000 MeV.

There are two reasons why the pseudoscalar Goldstone bosons are anoma-
lously light. First of all, the Goldstone boson masses in the color-flavor-locked
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Fig. 1. Electron chemical potential (solid lines) and kaon mass (dashed lines) in the
color-flavor-locked quark phase. The two curves for both quantities represent a simple
estimate of the uncertainties due to the value of the strange quark mass and the scale
setting procedure.

phase are proportional to the quark masses squared rather than linear in the
quark mass, as they are at zero density. This is due to an approximate Z2 chiral
symmetry in the color-flavor-locked phase [19]. In addition to that, the Gold-
stone boson masses are suppressed by a factor Δ/μ. This is a consequence of the
fact that the Goldstone modes are collective excitations of particles and holes
near the Fermi surface, whereas the quark mass term connects particles and
anti-particles, far away from the Fermi surface.

The fact that the meson spectrum is inverted, and that the kaon mass is
exceptionally small opens the possibility that in dense quark matter electrons
decay into kaons, and a kaon condensate is formed. Consider a kaon condensate
〈K−〉 = vKe−iμt where μ is the chemical potential for negative charge. The
thermodynamic potential H− μQ for this state is given by

ε(ρq, x, y, μ) =
3

4π2π
8/3ρ4/3

q

{
x4/3 + y4/3 + (1− x− y)4/3

+ π−4/3ρ−2/3
q m2

s(1− x− y)2/3
}

−
(
μ2 −m2

K

)
v2

K + O(v3
K) + μρqx−

1
12π2μ

4 (21)

Here, ρq = 3ρB is the quark density, and x = ρu/ρq and y = ρd/ρq are the up
and down quark fractions. For simplicity, we have dropped higher order terms in
the strange quark mass and neglected the electron mass. In order to determine
the ground state we have to make (21) stationary with respect to x, y, μ and
vK . Minimization with respect to x and y enforces β equilibrium, while mini-
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mization with respect to μ ensures charge neutrality. Below the onset for kaon
condensation we have vK = 0 and there is no kaon contribution to the charge
density. Neglecting me and higher order corrections in ms we find

μ � m2
s

4pF
=

π2/3m2
s

4ρ1/3
B

. (22)

In the absence of kaon condensation, the electron chemical potential will level off
at the value of the electron mass for very high baryon density. The onset of kaon
condensation is determined by the condition μ = mK . At this point it becomes
favorable to convert electrons into negatively charged kaons.

Results for the electron chemical potential and the kaon mass as a function
of the light quark Fermi momentum are shown in Fig. 1. In order to assess some of
the uncertainties we have varied the quark masses in the range mu = (3−5) MeV,
md = (6−8) MeV, and ms = (120−150) MeV. We have used the one loop result
for the running coupling constant at two different scales q = μ and q = μ/2. The
scale parameter was set to ΛQCD = 238 MeV, corresponding to αs(mτ ) = 0.35.
An important constraint is provided by the condition ms <

√
2pFΔ discussed

in the previous section. We have checked that this condition is always satisfied
for pF > 500 MeV. Figure 1 shows that there is significant uncertainty in the
relative magnitude of the chemical potential and the kaon mass. Nevertheless, the
band of kaon mass predictions lies systematically below the predicted chemical
potentials. We therefore conclude that kaon condensation appears likely even for
moderate Fermi momenta pF � 500 MeV. For very large baryon density μ→ me

while mK → 0 and kaon condensation seems inevitable.

5 Chiral Waves and Chiral Crystals

It is very important for the structure of compact stars to determine whether
the quark matter core is in liquid or solid form. In the previous sections we
discussed the case of weak coupling. In this case, particle-particle pairing is the
only instability that needs to be considered. Nevertheless, in strong coupling,
or if superconductivity is suppressed, other forms of pairing may take place.
Obvious candidates are the formation of larger clusters or particle-hole pairing.

Particle-hole pairing is characterized by an order parameter of the form

〈ψ̄(x)ψ(y)〉 = exp(iQ · (x + y))Σ(x− y), (23)

where Q is an arbitrary vector. This state describes a chiral density wave. It was
first suggested in [37] as the ground state of QCD at large chemical potential and
large Nc. This suggestion was based on the fact that particle-particle pairing,
and superconductivity, is suppressed for large Nc whereas particle-hole pairing is
not. Particle-hole pairing, on the other hand, uses only a small part of the Fermi
surface and does not take place in weak coupling. In the case of the one-gluon
exchange interaction these issues were studied in [38]. The main conclusion is
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that, in weak coupling, the chiral density wave instability requires very large
Nc � 3.

At moderate densities, and using realistic interactions, this is not necessarily
the case. In particular, we know that at zero density the particle-anti-particle
interaction is stronger, by a factor Nc− 2, than the particle-particle interaction.
In a Nambu-Jona-Lasinio type description this interaction exceeds the critical
value required for chiral symmetry breaking to take place. For this reason we have
recently studied the competition between the particle-particle and particle-hole
instabilities using non-perturbative, instanton generated, forces [39]. Our results
are not only relevant to flavor symmetric quark matter at moderate densities,
but also for the important case when there is a substantial difference between
the chemical potentials for up and down quarks. As discussed in section 3 this
disfavors ud-pairing, but it does not inhibit uu−1 and dd−1 particle-hole pairing.

Our results show that at low density the chiral density wave state is prac-
tically degenerate with the BCS solution. Given the uncertainties that affect
the calculation this implies that both states have to be considered as realistic
possibilities for the behavior of quark matter near the phase transition.

5.1 BCS Pairing

In order to study competing instabilities we use the standard Nambu-Gorkov
formalism, in which the propagator is written as a matrix in the space of all
possible pair condensates. The BCS channel is described by the 2× 2 matrix

ĜBCS =

(
〈ck↑ c†

k↑〉 〈ck↑ c−k↓〉
〈c†

−k↓ c†
k↑〉 〈c

†
−k↓ c−k↓〉

)
≡
(
G(k0,k,Δ) F̄ (k0,k,Δ)
F (k0,k,Δ) Ḡ(k0,−k,Δ)

)
. (24)

The propagator has the form

ĜBCS =
1

G−1
0 Ḡ−1

0 −ΔΔ̄

(
Ḡ−1

0 −Δ
−Δ̄ G−1

0

)
, (25)

where
G0 =

1
k0 − εk + iδεk

, Ḡ0 =
1

k0 + εk + iδεk

(26)

are the free particle propagator and its conjugate at finite chemical potential.
Here, εk = ωk − μq and δεk

= sgn(εk)δ determines the pole position. From this
equation we can read off the diagonal and off-diagonal components of the Gorkov
propagator. The off-diagonal, anomalous, propagator is

F (k0,k,Δ) =
−Δ

(k0 − εk + iδεk
)(k0 + εk + iδεk

)−Δ2 . (27)

The anomalous self energy Δ is determined by the gap equation

Δ = (−i) αpp

∫
d4p

(2π)4
F (p0,p,Δ). (28)

Here αpp is the effective coupling in the particle-particle channel.
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5.2 Chiral Density Wave

Using the same formalism we can also address pairing in the particle-hole chan-
nel at finite total pair momentum Q. In the mean-field approximation, the full
Greens function in the presence of a single density wave takes the form

ĜOvh =

(
〈ck↑ c†

k↑〉 〈ck↑ c†
k+Q↓〉

〈ck+Q↓ c†
k↑〉 〈ck+Q↓ c†

k+Q↓〉

)
≡
(
G(k0,k,Q, σ) S̄(k0,k,Q, σ)
S(k0,k,Q, σ) G(k0,k + Q,Q, σ)

)

=
[
Ĝ−1

0 − σ̂
]−1

(29)

Again, we can read off the anomalous part of the Greens function

S(k0,k,Q, σ) =
−σ

(k0 − εk + iδεk
)(k0 − εk+Q + iδεk+Q

)− σ2 , (30)

and the anomalous self energy σ is determined by a self-consistency, or gap,
equation

σ = (−i)αph

∫
d4p

(2π)4
S(p0,p,Q, σ;μq) . (31)

Notice that the energy contour integration receives non-vanishing contributions
only if

εp εp+Q − σ2 < 0 , (32)

which ensures that the two poles in p0 are in different (upper/lower) half-planes.
This means that one particle (above the Fermi surface) and one hole (below the
Fermi surface) participate in the interaction.

The formation of a condensate carrying nonzero total momentum Q is as-
sociated with nontrivial spatial structures. In the simplest case of particle-hole
pairs with total momentum Q this is a density wave of wave length λ = 2π/Q.
In three dimensions, however, we can have several density waves characterized
by different momenta Q. In this case, the resulting spatial structure is a crystal.
In general, the p-h pairing gap can be written as

σ(r) =
∑

j

+∞∑
n=−∞

σj,ne
inQj ·r , (33)

where the Qj correspond to the (finite) number of fundamental waves, and the
summation over |n| > 1 accounts for higher harmonics in the Fourier series. The
matrix propagator formalism allows for the treatment of more than one density
wave through a straightforward expansion of the basis states according to

Ĝ =

⎛⎜⎜⎜⎜⎝
〈ck↑ c†

k↑〉 〈ck↑ c†
k+Qx↓〉 〈ck↑ c†

k+Qy↓〉 · · ·
〈ck+Qx↓ c†

k↑〉 〈ck+Qx↓ c†
k+Qx↓〉 〈ck+Qx↓ c†

k+Qy↓〉 · · ·
〈ck+Qy↓ c†

k↑〉 〈ck+Qy↓ c†
k+Qx↓〉 〈ck+Qy↓ c†

k+Qy↓〉 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎠ . (34)
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Fig. 2. Dependence of the free energy (upper full line) and p-h pairing gap (dashed-
dotted) on the number of waves (’patches’) with fixed magnitude of the three-
momentum |Qj | = 0.8 GeV. The full line shows the value of the BCS ground state
free energy. The results correspond to an instanton calculation with μq = 0.4 GeV and
N/V = 1 fm−4.

The possibility of simultaneous BCS pairing can be incorporated by extending
the Gorkov propagator to include both particle-hole and particle-particle com-
ponents. In the following we will consider up to nw = 6 waves in three orthogonal
directions with Qx = Qy = Qz and n = ±1, characterizing a cubic crystal.

Note that in the propagators G0 we do not include the contribution of
anti-particles. This should be a reasonable approximation in the quark matter
phase at sufficiently large μq, when the standard particle-anti-particle chiral
condensate has disappeared. At the same time, since our analysis is based on
non-perturbative forces, the range of applicability is limited from above. Taken
together, we estimate the range of validity for our calculations to be roughly given
by 0.4 GeV ∼> μq ∼> 0.6 GeV. This coincides with the regime where, for the physical
current strange quark mass of ms � 0.14 GeV, the two-flavor superconductor
might prevail over the color-flavor locked (CFL) state so that our restriction to
Nf = 2 is supported.

Solutions of the gap equations correspond to extrema (minima) in the energy
density with respect to the gap σ. However, solutions may exist for several values
of the wave vector Q. To determine the minimum in this quantity, one has to
take into account the explicit form of the free energy density. In the mean-field
approximation,

V3 Ω(μq, Q, σ) =
∫

d3x

(
σ2(x)
2λ

+
〈
q† (iα · ∇ − 2σ(x) q)

〉)
, (35)
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Fig. 3. Left panel: wave-vector dependence of the density wave free energy for one
standing wave (full line: ΩOvh

tot , short-dashed line: ΩOvh
kin ) in comparison to the BCS

solution (long-dashed line: ΩBCS
tot , dotted line: ΩBCS

kin ) at μq = 0.4GeV. Right panel:
wave-vector dependence of the density wave pairing gap (full line) compared to the
BCS gap (long-dashed line).

where V3 is the 3-volume. The first contribution removes the double counting
from the fermionic contribution in the mean-field treatment.

We have studied the coupled gap equations numerically. We do not find
any solutions with simultaneous particle-particle and particle-hole condensates.
This reduces the problem to the question whether the BCS or the density wave
state is thermodynamically favored. The BCS solution Δ = 0.225 GeV is unique
and has free energy of ΩBCS(μq = 0.4 GeV) = 2.3 · 10−3 GeV4. Here, we have
neglected an irrelevant overall constant that does not affect the comparison with
the density wave state.

The situation is more complicated in the case of particle-hole pairing. Let
us start with the ‘canonical’ case where the momentum of the chiral density
wave is fixed at twice the Fermi momentum, Q = 2pF . In fig. 2 the resulting
minimized free energy is displayed as a function of the number of included waves.
The density wave solutions are not far above the BCS groundstate, with a slight
energy gain for an increased number of waves.

However, one can further economize the energy of the chiral density wave
state by exploiting the freedom associated with the wave vector Q (or, equiv-
alently, the periodicity of the lattice). For Q > 2pF the free energy rapidly
increases. On the other hand, for Q < 2pF more favorable configurations are
found. To correctly assess them one has to include the waves in pairs |k±Qj | of
standing waves (nw = 2, 4, 6, . . .) to ensure that the occupied states in the Fermi
sea are saturated within the first Brillouin Zone. The lowest-lying state we could
find at μq = 0.4 GeV occurs for one standing wave with Qmin � 0.5 GeV and
σ � 0.21 GeV with a free energy Ω � 2.3 · 10−3 GeV4, practically degenerate
with the BCS solution. This density wave has a wavelength λ � 2.5 fm. The
minimum in the wave vector is in fact rather shallow, as seen from the explicit
momentum dependence of the free energy displayed in fig. 3.
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Diquarks in Dense Matter
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Abstract. We describe aspects of the role that diquark correlations play in under-
standing baryon structure and interactions. The significance of diquarks in that appli-
cation motivates a study of the possibility that dense hadronic matter may exhibit di-
quark condensation; i.e., quark-quark pairing promoted by a quark chemical potential.
A Gorkov-Nambu-like gap equation is introduced for QCD and analysed for 2-colour
QCD (QC2D) and, in two qualitatively different truncations, for QCD itself. Among
other interesting features, we illustrate that QC2D with massive fermions undergoes
a second-order transition to a superfluid phase when the chemical potential exceeds
mπ/2. In the QCD application we illustrate that the σ := −〈q̄q〉1/3 �= 0 phase, which
determines the properties of the mass spectrum at zero temperature and chemical po-
tential, is unstable with respect to the superfluid phase when the chemical potential
exceeds ≈ 2 σ, and that at this point the diquark gap is large, ≈ σ/2. The superfluid
phase survives to temperatures greater than that expected in the core of compact stars.

1 Diquarks

A diquark is a bosonic quark-quark correlation, which is necessarily coloured in
all but 2-colour QCD (QC2D). Therefore, in the presence of colour-confinement,
diquarks cannot be directly observed in a Nc ≥ 3 colour gauge theory’s spec-
trum. Nevertheless evidence is accumulating that suggests confined diquark cor-
relations play an important role in hadronic spectroscopy and interactions.

The first discussion of diquark correlations in literature addressing the
strong interaction is almost coincident with that of quarks themselves [1,2]. It
was quickly realised that both Lorentz scalar and vector diquarks, at least, are
important for baryon spectroscopy [3] and, from a consideration of baryon mag-
netic moments [4], that the diquark correlations are not pointlike. This latter
point is still often overlooked, although with decreasing frequency and now cer-
tainly without the imputation that it is a realistic simplification.

The motivation for considering diquarks in the constituent-quark model
is that treating baryons directly as a three-body problem poses significant chal-
lenges in anything other than a mean-field approach. The task is much simplified
if two of the constituents can be replaced by a single degree of freedom. However,
an obvious question is whether there is any sense in which that replacement is
more than just an expedient; i.e., a sense in which it captures some important
aspect of QCD’s dynamics? The answer is “yes” and we now turn to explaining
that.

A significant step toward a description of baryons in quantum field theory
can be identified in the realisation [5] that a large class of field theoretical models
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of the strong interaction admit the construction of a meson-diquark auxiliary-
field effective action and thereby a description of baryons as loosely-bound quark-
diquark composites. This is the class of theories with a chiral symmetry pre-
serving four-fermion interaction, which includes, e.g., the Nambu–Jona-Lasinio
model [6] and the Global Color Model [7], that have been widely used in analysing
low energy strong interaction phenomena.

The picture of a baryon as loosely bound quark-diquark composite can also
be reached via a direct analysis of the bound state contributions to the three
quark scattering matrix. The associated Schwinger function (Euclidean Green
function) is just that quantity whose large Euclidean-time behaviour yields a
baryon’s mass in numerical simulations of lattice-QCD. Considering the colour
structure of this Schwinger function, we focus on the Clebsch-Gordon series for
quarks in the fundamental representation of SUc(3):

3c ⊗ 3c ⊗ 3c = (3̄c ⊕ 6c)⊗ 3c = 1c ⊕ 8′
c ⊕ 8c ⊕ 10c , (1)

from which it is clear that a colour singlet 3-quark contribution is only possible
when two of the quarks are combined to transform according to the antitriplet,
3̄c, representation. This is the representation under which antiquarks transform.

Single gluon exchange is repulsive in the 6c channel but attractive in the
3̄c channel. It is this feature that underpins the existence of the meson-diquark
bosonisation referred to above. One way to see that is to realise that the auxiliary
field effective action obtained for any element of the class of four-fermion interac-
tion models provides a Lagrangian realisation of the rainbow-ladder truncation
of the Dyson-Schwinger equations (DSEs) [8]. The rainbow-ladder truncation
has been widely and successfully employed in the study of meson spectroscopy
and interactions, see, e.g., Refs. [9,10,11,12], and nonpointlike colour-antitriplet
diquark bound states exist in this truncation of the quark-quark Bethe-Salpeter
equation (BSE) [13]. Hence they provide a real degree of freedom to be used in
the bosonisation.

At first sight the existence of colour-antitriplet diquark bound states in these
models, and in the rainbow-ladder truncation, appears to be a problem because
such states are not observed in the QCD spectrum. However, as demonstrated
in Refs. [14,15], this apparent lack of confinement is primarily an artefact of the
rainbow-ladder truncation. Higher order terms in the quark-quark scattering
kernel, the crossed-box and vertex corrections, whose analogue in the quark-
antiquark channel do not much affect many of the colour singlet meson chan-
nels, act to ensure that the quark-quark scattering matrix does not exhibit the
singularities that correspond to asymptotic (unconfined) diquark bound states.

Nevertheless, such studies with improved kernels, which do not produce
diquark bound states, do support a physical interpretation of the “spurious”
rainbow-ladder diquark masses. Denoting the mass in a given diquark channel
(scalar, pseudovector, etc.) by mqq, then $qq := 1/mqq represents the range over
which a true diquark correlation in this channel can persist inside a baryon. In
this sense they are “pseudo-particle” masses that can be used to estimate which
3̄c diquark correlations should dominate the bound state contribution to the
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three quark scattering matrix, and hence which should be retained in deriving
and solving a Poincaré covariant homogeneous Fadde′ev equation for baryons.

The simple Goldstone-theorem-preserving rainbow-ladder kernel of Ref. [16]
can be used to illustrate this point. The model yields the following calculated
diquark masses (isospin symmetry is assumed):

(qq)JP (ud)0+ (us)0+ (uu)1+ (us)1+ (ss)1+ (uu)1− (us)1− (ss)1−

mqq (GeV) 0.74 0.88 0.95 1.05 1.13 1.47 1.53 1.64
(2)

and the results are relevant because the mass ordering is characteristic and
model-independent, and lattice estimates, where available [17], agree with the
masses tabulated here. Equation (2) suggests that an accurate study of the
nucleon should retain the scalar and pseudovector correlations: (ud)0+ , (uu)1+ ,
(ud)1+ , (dd)1+ , because for these diquarks mqq ∼< mN , where mN is the nucleon
mass, but may neglect other correlations. Furthermore, it is obvious from the
angular momentum Clebsch-Gordon series: 1

2 ⊗ 0 = 1
2 and 1

2 ⊗ 1 = 1
2 ⊕ 3

2 , that
decuplet baryons are inaccessible without pseudovector diquark correlations. It
is interesting to note that m(ud)0+ /m(uu)1+ = 0.78 cf. 0.76 = mN/mΔ and hence
one might anticipate that the presence of diquark correlations in baryons can
provide a straightforward explanation of the N -Δ mass-splitting and other like
effects. These ideas were first enunciated in Refs. [18,19] and Ref. [20] provides
a convincing demonstration of their efficacy.

Explicit calculations; e.g., Ref. [12], show that retaining only a scalar di-
quark correlation in the kernel of the nucleon’s Fadde′ev equation provides in-
sufficient binding to obtain the experimental nucleon mass: the best calculated
value is typically ∼ 40% too large. However, with the addition of a pseudovector
diquark it is easy to simultaneously obtain [12,21] the experimental masses of the
nucleon and Δ. Such calculations plainly verify the intuition that follows from
simple mass-counting: the pseudovector diquarks are an important but subdom-
inant element of the nucleon’s Fadde′ev amplitude (cf. the scalar diquark) whilst
being the sole component of the Δ.

The presence of diquark correlations in baryons also affects the predictions
for scattering observables, which may therefore provide a means for experimen-
tally verifying the ideas described above. For example, their presence provides
a simple explanation of the neutron’s nonzero electric form factor [12]: charge
separation arising from a heavy (ud) diquark with electric charge 1

3 holding on
to a relatively light, electric charge (− 1

3 ) d-quark. And also a prediction for the
ratio of the proton’s valence-quark distributions: d/u := dv(x → 1)/uv(x → 1),
which can be measured in deep inelastic scattering [22]. In this case, diquark
correlations with differing masses in the nucleon’s Fadde′ev amplitude are an
immediate indication of the breaking of SU(6) symmetry, hence d/u �= 1/2. Fur-
thermore, if it were true that m(qq)JP

�m(ud)0+ , for all JP �= 0+, then d/u = 0.
However, as we have seen, in reality the 1+ diquark is an important subdominant
piece of the nucleon’s Fadde′ev amplitude so that a realistic picture of diquarks
in the nucleon implies 0 < d/u < 1

2 , with the actual value being a sensitive
measure of the proton’s pseudovector diquark fraction.
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2 Superfluidity in Quark Matter

We have outlined above the role and nature of diquark correlations in hadronic
physics at zero temperature and density, and emphasised that diquarks are an
idea as old as that of quarks themselves. Another phenomenon suggested imme-
diately by the meson-diquark auxiliary-field effective action is that of diquark
condensation; i.e., quark-quark Cooper pairing, which was first explored in this
context using a simple version of the Nambu–Jona-Lasinio model [23]. A chem-
ical potential promotes Cooper pairing in fermion systems and the possibility
that such diquark pairing is exhibited in quark matter is also an old idea, early
explorations of which employed [24] the rainbow-ladder truncation of the quark
DSE (QCD gap equation). That interest in this possibility has been renewed is
evident in a number of contributions to this volume [25,26,27,28,29]. A quark-
quark Cooper pair is a composite boson with both electric and colour charge,
and hence superfluidity in quark matter entails superconductivity and colour
superconductivity. However, the last feature makes it difficult to identify an or-
der parameter that can characterise a transition to the superfluid phase: the
Cooper pair is gauge dependent and an order parameter is ideally describable
by a gauge-invariant operator. This particularly inhibits an analysis of the phe-
nomenon using lattice-QCD.

2.1 Gap Equation

Studies of the gap equation that suppress the possibility of diquark condensa-
tion show that cold, sparse two-flavour QCD exhibits a nonzero quark-antiquark
condensate: 〈q̄q〉 �= 0. If it were otherwise then the π-meson would be almost
as massive as the ρ-meson, which would yield a very different observable world.
The quark condensate is undermined by increasing μ and T , and there is a large
domain in the physical (upper-right) quadrant of the (μ, T )-plane for which
〈q̄q〉 = 0: for the purpose of exemplification, that domain can crudely be char-
acterised as the set (see, e.g., Refs. [30,31,32]):

{(μ, T ) : μ2/μ2
c + T 2/T 2

c > 1 , μ, T > 0 ;μc ∼ 0.3 – 0.4 GeV, Tc ∼ 0.15 GeV} .
(3)

Increasing temperature also opposes Cooper pairing. However, since increas-
ing μ promotes it, there may be a (large-μ,low-T )-subdomain in which quark
matter exists in a superfluid phase. That domain, if it exists, is unlikely to
be accessible at the Relativistic Heavy Ion Collider, because it operates in the
high temperature regime, but may be realised in the core of compact astro-
physical objects, which could undergo a transition to superfluid quark matter
as they cool. Possible signals accompanying such a transition are considered in
Refs. [25,27,28,29].

It was observed in Ref. [33] that a direct means of determining whether a
SUc(N) gauge theory supports scalar diquark condensation is to study the gap



222 M-B. Hecht, C.D. Roberts, and S.M. Schmidt

equation satisfied by

D(p, μ) := S(p, μ)−1 =

(
D(p, μ) Δi(p, μ) γ5λ

i
∧

−Δi(p,−μ) γ5λ
i
∧ CD(−p, μ)tC†

)
. (4)

Here T = 0, for illustrative simplicity and because temperature can only act to
destabilise a condensate, and, with ω[μ] = p4 + iμ,

D(p, μ) = iγ · pA(p2, ω2
[μ]) + B(p2, ω2

[μ]) + iγ4 ω[μ] C(p2, ω2
[μ]) ; (5)

i.e., the inverse of the dressed-quark propagator in the absence of diquark pairing.
(NB. For μ = 0, A, B and C are real functions.) It is one of the fundamental
features of DSE studies that the existence of a nonzero quark condensate: 〈q̄q〉 �=
0, is signalled in the solution of the gap equation by B(p 2, ω2

[μ]) �≡ 0 [9].
In Eq. (4), {λi

∧, i = 1 . . . n∧
c , n∧

c = Nc(Nc − 1)/2} are the antisymmetric
generators of SUc(Nc) and C = γ2γ4 is the charge conjugation matrix,

Cγt
μC

† = −γμ ; [C, γ5] = 0 , (6)

where Xt denotes the matrix transpose of X. The key new feature here is that
diquark condensation is characterised by Δi(p, μ) �≡ 0, for at least one i. That
is clear if one considers the quark piece of the QCD Lagrangian density: L[q̄, q].
It is a scalar and hence L[q̄, q]t = L[q̄, q]. Therefore L[q̄, q] ∝ L[q̄, q] + L[q̄, q]t,
and it is a simple exercise to show that this sum, and hence the action, can be
re-expressed in terms of a 2× 2 diagonal matrix using the bispinor fields

Q(x) :=

(
q(x)

q(x) := τ2
f C q̄t

)
, Q̄(x) :=

(
q̄(x) q̄(x) := qt C τ2

f

)
, (7)

where {τ i
f : i = 1, 2, 3} are Pauli matrices that act on the isospin index.1 It is

plain upon inspection that a nonzero entry: d(x) γ5, in row-2–column-1 of this
action-matrix would act as a source for qtτ2

fCγ5q; i.e., as a scalar diquark source.
It is plain now that the explicit 2× 2 matrix structure of D(p, μ) in Eq. (4)

exhibits a quark bispinor index that is made with reference to Q(x), Q̄(x). This
approach; i.e., employing a “matrix propagator” with “anomalous” off-diagonal
elements, simply exploits the Gorkov-Nambu treatment of superconductivity in
fermionic systems, which is explained in textbooks, e.g., Ref. [34]. It makes pos-
sible a well-ordered treatment and makes unnecessary a truncated bosonisation,
which in all but the simplest models is a procedure difficult to improve system-
atically.

The bispinor gap equation can be written in the form

D(p, μ) = D0(p, μ) +

(
Σ11(p, μ) Σ12(p, μ)

γ4 Σ12(−p, μ) γ4 CΣ11(−p, μ)tC†

)
, (8)

1 We only consider theories with two light-flavours. Additional possibilities open if this
restriction is lifted [25,26].
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where the second term on the right-hand-side is just the bispinor self energy.
Here, in the absence of a scalar diquark source term,

D0(p, μ) = (iγ · p + m)τ0
Q − μ τ3

Q , (9)

with m the current-quark mass, and the additional Pauli matrices: {τα
Q, α =

0, 1, 2, 3}, act on the bispinor indices. As we will see, the structure of Σij(p, μ)
specifies the theory and, in practice, also the approximation or truncation of it.

3 Two Colours

Two colour QCD (QC2D) provides an important and instructive example. In
this case Δiλi

∧ = Δτ2
c in Eq. (4), with 1

2τc the generators of SUc(2), and it is
useful to employ a modified bispinor

Q2(x) :=

(
q(x)

q
2

:= τ2
c q(x)

)
, Q̄2(x) :=

(
q̄(x) q̄

2
(x) := q̄(x) τ2

c

)
. (10)

Embedding the additional factor of τ2
c in this way makes it possible to write the

Lagrangian’s fermion–gauge-boson interaction term as

Q̄2(x)
i

2
gγμτ

k
c τ

0
Q Q2(x)Ak

μ(x) (11)

because SUc(2) is pseudoreal; i.e., τ2
c (−τ c)

t
τ2
c = τ c, and the fundamental and

conjugate representations are equivalent; i.e., fermions and antifermions are prac-
tically indistinguishable. (That the interaction term takes this form is easily seen
using L[q̄, q]t = L[q̄, q].)

Using the pseudoreality of SUc(2) it can be shown that, for μ = 0 and in
the chiral limit, m = 0, the general solution of the bispinor gap equation is [33]

D(p) = iγ ·pA(p2)+V(−π)M(p2) , V(π) = exp

{
iγ5

5∑
�=1

T � π�

}
= V(−π)−1 ,

(12)
where π�=1,...,5 are arbitrary constants and

{T 1,2,3 = τ3
Q ⊗ τf , T

4 = τ1
Q ⊗ τ0

f , T
5 = τ2

Q ⊗ τ0
f } , {T i, T j} = 2δij , (13)

so that D−1 is

S(p) =
−iγ · pA(p2) + V(π)M(p2)

p2A2(p2) +M2(p2)
:= −iγ · p σV (p2) + V(π)σS(p2) . (14)

[To illustrate this, note that inserting π = (0, 0, 0, 0,−1
4π) produces an inverse

bispinor propagator with the simple form in Eq. (4).]
That the gap equation is satisfied for any constants π� signals a vacuum

degeneracy – it corresponds to a multidimensional “Mexican hat” structure of
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�

�

��

� �

Fig. 1. Illustration of the vertex-corrected gap equation, which is the next-to-leading-
order in the systematic, symmetry-preserving truncation scheme of Ref. [14]. Retaining
only the first two diagrams on the right-hand-side yields the dressed-rainbow trunca-
tion. Each bispinor quark-gluon vertex is bare but the shaded circles mark quark and
gluon 2-point functions that are dressed. The corresponding truncation in the relevant
Bethe-Salpeter equations ensures the absence of diquark bound states in the strong
interaction spectrum. (Adapted from Ref. [33].)

the theory’s effective potential, as noted in a related context in Ref. [35]. Con-
sequently, if the interaction supports a mass gap, then that gap describes a
five-parameter continuum of degenerate condensates:

〈Q̄2V(π)Q2〉 �= 0 , (15)

and there are 5 associated Goldstone bosons: 3 pions, a diquark and an anti-
diquark. (Diquarks are the “baryons” of QC2D.) In the construction of Eq. (12)
one has a simple elucidation of a necessary consequence of the Pauli-Gürsey
symmetry of QC2D; i.e., the practical equivalence of particles and antiparticles.

For m �= 0, the gap equation requires [33] trFQ

[
T iV

]
= 0, so that in

this case only 〈Q̄2Q2〉 �= 0 and now the spectrum contains five degenerate but
massive pseudo-Goldstone bosons. This illustrates that a nonzero current-quark
mass promotes a quark condensate and opposes diquark condensation.

For μ �= 0 the general solution of the gap equation has the form

D(p, μ) =

(
D(p, μ) γ5 Δ(p, μ)

−γ5Δ
∗(p, μ) CD(−p, μ)C†

)
. (16)

In the absence of a diquark condensate; i.e., for Δ ≡ 0,

[UB(α),D(p, μ)] = 0 , UB(α) := eiατ3
Q⊗τ0

f ; (17)

i.e., baryon number is conserved in QC2D. This makes plain that the existence
of a diquark condensate dynamically breaks this symmetry.

To proceed we choose to be explicit and employ the dressed-rainbow trunca-
tion of the gap equation, see Fig. 1, with a model for the Landau gauge dressed-
gluon propagator:

g2Dμν(k) =
(
δμν −

kμkν

k2

)
F2(k2) , F2(k2) =

64
9
π4 η̂2 δ4(k) . (18)
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This form for g2Dμν(k) was introduced [36] for the modelling of confinement
in QCD but it is also appropriate here because the string tension in QC2D is
nonzero, and that is represented implicitly in Eq. (18) via the mass-scale η̂.

Using Eq. (18) we obtain an algebraic dressed-rainbow gap equation that,
for p2 = |p|2 + p2

4 = 0, reads:

A− 1 =
1
2
η̂2 K

{
A (B∗2 − C∗2μ2) + A∗ |Δ|2

}
, (19)

(C − 1)μ =
μ

2
η̂2 K

{
C (B∗2 − C∗2μ2)− C∗ |Δ|2

}
, (20)

B −m = η̂2 K
{
B (B∗2 − C∗2μ2) + B∗ |Δ|2

}
, (21)

Δ = η̂2 K
{
Δ (|B|2 + |C|2μ2) + Δ |Δ|2

}
, (22)

with K−1 = |B2−C2μ2|2 +2|Δ|2(|B|2 + |C|2μ2)+ |Δ|4 . These equations possess
a B ↔ Δ symmetry when (m,μ) = 0, which is a straightforward illustration of
the vacuum degeneracy described above using the matrix V(π). (Recall that for
μ = 0, A, B and C are real functions.) They also exemplify the general result
that Δ is real for all μ. Another exemplary result follows from a linearisation in
μ2: μ �= 0 acts to promote a nonzero value of Δ but oppose a nonzero value of
B; i.e., a nonzero chemical potential plainly acts to promote Cooper pairing at
the expense of 〈q̄q〉.

For (m,μ) = 0 the solution of the dressed-rainbow gap equation obtained
using Eq. (18) is:

A(p2) = C(p2) =

⎧⎨⎩2, p2 < η̂2

4
1
2

(
1 +

√
1 + 2η̂2

p2

)
, otherwise ,

(23)

M2(p2) := B2(p2) + Δ2(p2) =

{
η̂2 − 4p2, p2 < η̂2

4
0, otherwise .

(24)

As we have already mentioned, the dynamically generated mass function,M(p2),
is tied to the existence of quark and/or diquark condensates, which can be il-
lustrated by noting that (B = 0,Δ �= 0) corresponds to π = (0, 0, 0, 0, 1

2π)
in Eq. (15); i.e., 〈Q̄2iγ5τ

2
QQ2〉 �= 0, while (B �= 0,Δ = 0) corresponds to

π = (0, 0, 0, 0, 0); i.e., 〈Q̄2Q2〉 �= 0.
The usual chiral, SUA(2), transformations are realised via

D(p, μ)→ V (π)D(p, μ)V (π) , V (π) := eiγ5π·T , π = (π1, π2, π3) , (25)

and therefore, since the anticommutator {T , T 4,5} = 0, a diquark condensate
does not dynamically break chiral symmetry. On the other hand, since [1,T ] = 0,
a quark condensate does dynamically break chiral symmetry.

In addition, and of particular importance, is the feature that in combination
with the momentum-dependent vector self energy the momentum-dependence of
M(p2) ensures that the dressed-quark propagator does not have a Lehmann rep-
resentation and hence can be interpreted as describing a confined quark [8,9,10].
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The interplay between the scalar and vector self energies is the key to this realisa-
tion of confinement. The qualitative features of this simple model’s dressed-quark
propagator have been confirmed in recent lattice-QCD simulations [37] and the
agreement between those simulations and more sophisticated DSE studies is
semi-quantitative [11].

In the steepest descent (or stationary phase) approximation the contribution
of dressed-quarks to the thermodynamic pressure is

pΣ(μ, T ) =
1

2βV

{
TrLn

[
βS−1]− 1

2
Tr [Σ S]

}
, (26)

where β = 1/T , and “Tr” and “Ln” are extensions of “tr” and “ln” to matrix-
valued functions.

The MIT Bag Model pictures the quarks in a baryon as occupying a spatial
volume from which the nontrivial quark-condensed vacuum (scalar-field) has
been expelled. Therefore, as observed in Refs. [35], the bag constant can be
identified as the pressure difference between the 〈q̄q〉 �= 0 vacuum, the so-called
Nambu-Goldstone phase in which chiral symmetry is dynamically broken, and
the chirally symmetric no-condensate alternative, which is called the Wigner-
Weyl vacuum. That difference is given by

BB(μ) := pΣ(μ,S[B,Δ = 0])− pΣ(μ,S[B = 0,Δ = 0]) , (27)

and it is, of course, μ-dependent because the vacuum evolves with changing μ.
BB also evolves with temperature and this necessary (μ, T )-dependence of the
bag constant can have an important effect on quark star properties; e.g., reducing
the maximum supportable mass of a quark matter star, as discussed in Ref. [38].

If we define, by analogy,

BΔ(μ) := pΣ(μ,S[B = 0,Δ])− pΣ(μ,S[B = 0,Δ = 0]) , (28)

then the relative stability of the quark- and diquark-condensed phases is mea-
sured by the pressure difference

δp(μ) := BΔ(μ)− BB(μ) . (29)

For δp(μ) > 0 the diquark condensed phase is favoured.
At (m = 0, μ = 0), δp = 0, with

BB(0) = BΔ(0) = (0.092 η̂)4 . (30)

This equality is a manifestation of the vacuum degeneracy identified above in
connection with the matrix V(π). However,

with m = 0 , δp > 0 for all μ > 0 , (31)

which means that the Wigner-Weyl vacuum is unstable with respect to diquark
condensation for all μ > 0 [33] and that the superfluid phase is favoured over
the Nambu-Goldstone phase.
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Fig. 2. Evolution of the critical chemical potential for diquark condensation as the
current-quark mass is increased. The coordinate measures the magnitude of the current-
quark mass through the mass of the theory’s lightest excitation [a pseudo-Goldstone
mode, as described after Eq. (15)]. μc and mπ are measured in units of the model’s
mass scale, η̂ in Eq. (18): for m = 0, the vector meson mass is 1√

2
η̂.

Now, although the action for the μ �= 0 theory is invariant under

Q2 → UB(α)Q2 , Q̄2 → Q̄2 UB(−α) , (32)

which is associated with baryon number conservation, the diquark condensate
breaks this symmetry:

〈Q̄2iγ5τ
2
QQ2〉 → cos(2α) 〈Q̄2iγ5τ

2
QQ2〉 − sin(2α) 〈Q̄2iγ5τ

1
QQ2〉 ; (33)

i.e., it is a ground state that is not invariant under the transformation. Hence,
for (m = 0, μ �= 0), only one Goldstone mode remains. These symmetry breaking
patterns and the concomitant numbers of Goldstone modes in QC2D are also
described in Ref. [39].

For m �= 0 and small values of μ the gap equation only admits a solution
with Δ ≡ 0; i.e., diquark condensation is blocked because the current-quark
mass is a source of the quark condensate [see, e.g., Eq. (21) and the comments
after Eq. (15)]. However, with increasing μ, the theory undergoes a transition to
a phase in which the diquark condensate is nonzero. We identify the transition
as second order because the diquark condensate falls continuously to zero as
μ→ μ+

c , where μc is the critical chemical potential. In Fig. 2 we plot the critical
chemical potential as a function of mπ/2, where, to sidestep solving the Bethe-
Salpeter equation, mπ was obtained using a Gell-Mann–Oakes–Renner-like mass
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formula, Eqs. (16)-(18) in Ref. [31], which follows [40] from the axial-vector
Ward-Takahashi identity. From the figure it is clear that this simple model of
QC2D exhibits the relation

μc = 1
2 mπ , (34)

which is anticipated for QCD-like theories with pseudoreal fermions [41]. We note
that the deviation from Eq. (34) at larger values of mπ results from neglecting
O(m2)-corrections in the mass formula. This omission leads to an underestimate
of the pion mass [42], which is responsible for the upward deflection of the
calculated results evident in Fig. 2.

In exemplifying these features we have employed the rainbow-ladder trunca-
tion. However, improving on that will only yield quantitative changes of ∼< 20%
in the results because the pseudoreality of QC2D and the equal dimension of the
colour and bispinor spaces, which underly the theory’s Pauli-Gürsey symmetry,
ensure that the entire discussion remains qualitatively unchanged. In particular,
the results of Fig. 2 and Eq. (34), being tied to chiral symmetry, remain un-
changed because at least one systematic, chiral symmetry preserving truncation
scheme exists [14].

4 Three Colours

The exploration of superfluidity in true QCD encounters two differences: the
dimension of the colour space is greater than that of the bispinor space and the
fundamental and conjugate representations of the gauge group are not equiva-
lent. The latter is of obvious importance because it entails that the quark-quark
and quark-antiquark scattering matrices are qualitatively different.

n∧
c = 3 in QCD and hence in canvassing superfluidity it is necessary to

choose a direction for the condensate in colour space;2 e.g., Δiλi
∧ = Δλ2 in

Eq. (4), so that

D(p, μ) =

(
D‖(p, μ)P‖ + D⊥(p, μ)P⊥ Δ(p, μ)γ5λ

2

−Δ(p,−μ)γ5λ
2 CD‖(−p, μ)C†P‖ + CD⊥(p, μ)C†P⊥

)
,

(35)
where P‖ = (λ2)2, P⊥ + P‖ = diag(1, 1, 1), and D‖, D⊥ are defined via obvious
generalisations of Eqs. (4), (5). In Eq. (35) the evident, demarcated block struc-
ture makes explicit the bispinor index: each block is a 3 × 3 colour matrix and
the subscripts: ‖, ⊥, indicate whether or not the subspace is accessible via λ2.

The bispinors associated with this representation are given in Eqs. (7) and
in this case the Lagrangian’s quark-gluon interaction term is

Q̄(x)igΓ a
μQ(x)Aa

μ(x) , Γ a
μ =

(
1
2γμλ

a 0

0 − 1
2γμ(λa)t

)
. (36)

2 It is this selection of a direction in colour space that opens the possibility for
colour-flavour locked diquark condensation in a theory with three effectively-massless
quarks; i.e., current-quark masses 	 μ [25,26].
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It is instructive to compare this with Eq. (11): with three colours the interaction
term is not proportional to the identity matrix in the bispinor space, τ0

Q. This
makes plain the inequivalence of the fundamental and conjugate fermion repre-
sentations of SUc(3), which entails that quark-antiquark scattering is different
from quark-quark scattering.

It is straightforward to derive the gap equation at arbitrary order in the
truncation scheme of Ref. [14] and it is important to note that because

D‖(p, μ)P‖ + D⊥(p, μ)P⊥ = (37)

λ0 { 2
3D‖(p, μ) + 1

3D⊥(p, μ)
}

+ 1√
3
λ8 {D‖(p, μ)−D⊥(p, μ)

}
the interaction: Γ a

μS(p, μ)Γ a
ν , necessarily couples the ‖- and ⊥-components. Ref-

erence [33] explored the possibility of diquark condensation in QCD using both
the rainbow and vertex-corrected gap equation, illustrated in Fig. 1, with

g2Dμν(k) =
(
δμν −

kμkν

k2

)
F(k2) , F(k2) = 4π4 η2 δ4(k) . (38)

For (m,μ) = 0 the rainbow-ladder truncation yields

m2
ω = m2

ρ = 1
2 η

2, 〈q̄q〉0 = (0.11 η)3, BB(μ = 0) = (0.10 η)4, (39)

and momentum-dependent vector self energies, which lead to an interaction be-
tween the ‖- and ⊥-components of D that blocks diquark condensation. This is
in spite of the fact that λaλ2(−λa)t = 1

2λ
aλa, which entails that the rainbow-

truncation quark-quark scattering kernel is purely attractive and strong enough
to produce diquark bound states [13]. (Remember that in the colour singlet me-
son channel the rainbow-ladder truncation gives the colour coupling λaλa; i.e.,
an interaction with the same sign but twice as strong.)

For μ �= 0 and in the absence of diquark condensation this model and
truncation exhibits [30] coincident, first order chiral symmetry restoring and
deconfining transitions at

μB,Δ=0
c, rainbow = 0.28 η = 0.3 GeV , (40)

with η = 1.06 GeV fixed by fitting the m �= 0 vector meson mass [14].
For (m = 0, μ �= 0), however, the rainbow-truncation gap equation admits

a solution with Δ(p, μ) �≡ 0 and B(p, μ) ≡ 0. The pressure difference, δp(μ) in
Eq. (29), is again the way to determine whether the stable ground state is the
Nambu-Goldstone or superfluid phase. With increasing μ, BB(μ) decreases, very
slowly at first, and BΔ(μ) increases rapidly from zero. That evolution continues
until

μB=0,Δ
c, rainbow = 0.25 η = 0.89μB,Δ=0

c, rainbow , (41)

where BΔ(μ) becomes greater-than BB(μ). This signals a first order transition
to the superfluid ground state and at the boundary

〈Q̄iγ5τ
2
Qλ2Q〉μ=μB=0,Δ

c, rainbow
= (0.65)3 〈Q̄Q〉μ=0 . (42)
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Fig. 3. Dashed line: Δ(z, μB,Δ
c ) obtained in rainbow truncation with the QCD model

defined via Eq. (38), plotted for α = 0 as a function of p, where z = p (0, 0, sin α, iμ +
cos α). As μ increases, the peak position shifts to larger values of p and the peak height
increases. Solid line: Δ(z, μ = 0) obtained as the solution of Eq. (43), the vertex-
corrected gap equation, also with α = 0. (Adapted from Ref. [33].)

Since BΔ(μ) > 0 for all μ > 0 there is no intermediate domain of μ in which all
condensates vanish.

The solution of the rainbow gap equation: Δ(p, μB,Δ
c ), which is real and

characterises the diquark gap, is plotted in Fig. 3. It vanishes at p2 = 0 as a
consequence of the ‖-⊥ coupling that blocked diquark condensation at μ = 0,
and also at large p2, which is a manifestation of this simple model’s version of
asymptotic freedom.

The chemical potential3 at which the switch to the superfluid ground state
occurs, Eq. (41), is consistent with other estimates made using models compa-
rable to the rainbow-truncation class [25,26,44,45,46], as is the large magnitude
of the gap at this point [25,26,44,45].

A question that now arises is: How sensitive is this phenomenon to the na-
ture of the quark-quark interaction? As we discussed in connection with Eq. (2),
the inhomogeneous dressed-ladder BSE exhibits particle-like singularities in the
0+ diquark channels and such states do not exist in the strong interaction spec-
3 We note that in a two flavour free-quark gas at μ = 0.3GeV the baryon number

density is 1.5 ρ0, where ρ0 = 0.16 fm−3. In the same system at μ = 0.55GeV the
baryon number density is > 10 ρ0. For comparison, the central core density expected
in a 1.4 M� neutron star is 3.6-4.1 ρ0 [43]. Arguments valid at “asymptotically large”
quark chemical potential are therefore unlikely to be relevant to experimentally or
observationally accessible systems.
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trum. Does diquark condensation persist when a truncation of the gap equation
is employed that does not correspond to a BSE whose solutions exhibit diquark
bound states? The vertex corrected gap equation,

D(p, μ) = D0(p, μ) (43)
+ 3

16η
2 Γ a

ρ S(p, μ)Γ a
ρ − 9

256η
4 Γ a

ρ S(p, μ)Γ b
σ S(p, μ)Γ a

ρ S(p, μ)Γ b
σ ,

which is depicted in Fig. 1, is just such a truncation and it was also studied in
Ref. [33].

In this case there is a Δ �≡ 0 solution even for μ = 0, which is illustrated in
Fig. 3, and using the interaction of Eq. (38)

m2
ρ = (1.1) m2 ladder

ρ , 〈Q̄Q〉 = (1.0)3 〈Q̄Q〉rainbow, BB = (1.1)4 B rainbow
B , (44)

where the rainbow-ladder results are given in Eqs. (39), and

〈Q̄iγ5τ
2
Qλ2Q〉 = (0.48)3 〈Q̄Q〉 , BΔ = (0.42)4 BB . (45)

The last result shows, unsurprisingly, that the Nambu-Goldstone phase is fa-
voured at μ = 0. Precluding diquark condensation, the solution of the vertex-
corrected gap equation exhibits coincident, first order chiral symmetry restoring
and deconfinement transitions at

μB,Δ=0
c = 0.77μB,Δ=0

c, rainbow . (46)

Admitting diquark condensation, however, the μ-dependence of the bag con-
stants again shows there is a first order transition to the superfluid phase, here
at

μB=0,Δ
c = 0.63μB,Δ=0

c , with 〈Q̄iγ5τ
2
Qλ2Q〉μ=0.63 μB,Δ=0

c
= (0.51)3 〈Q̄Q〉μ=0 .

(47)
(NB. This discussion is still for m = 0. We saw at the end of Sec. 3 what effects
to anticipate at m �= 0.) Thus the material step of employing a truncation that
eliminates diquark bound states leads only to small quantitative changes in the
quantities characterising the still extant superfluid phase; e.g., reductions in the
magnitude of both the critical chemical potential for the transition to superfluid
quark matter and the gap. Hence scalar diquark condensation appears to be
a robust phenomenon. One caveat to bear in mind, however, is that the gap
equation studies conducted hitherto do not obviate the question of whether the
diquark condensed phase is stable with-respect-to dinucleon condensation [47],
which requires further attention.

Heating causes the diquark condensate to evaporate. Existing studies sug-
gest that it will disappear for T ∼> 60–100 MeV [25,26,44,46]. However, such
temperatures are high relative to that anticipated inside dense astrophysical ob-
jects, which may indeed therefore provide an environment for detecting quark
matter superfluidity.



232 M-B. Hecht, C.D. Roberts, and S.M. Schmidt

5 Summary

The idea that diquark correlations play an important role in strong interaction
physics is an old one. However, modern computational resources and theoretical
techniques make possible a more thorough and quantitative exploration of the
merits of this idea and its realisation in QCD. These advances are in part respon-
sible for the contemporary resurgence of interest in all aspects of diquark-related
phenomena.

Herein we have attempted to provide a qualitative understanding of the
nature of diquark condensation using exemplary, algebraic models, and focusing
on two flavour theories for simplicity.

The gap equation is a primary tool in all studies of pairing. Using the
special case of 2-colour QCD, QC2D, we illustrated via an analysis of the gap
equation how a nonzero chemical potential promotes Cooper pairing and how
that pairing can overwhelm a source for quark-antiquark condensation, such as
a fermion current-mass. As we saw, the pseudoreality of SU(Nc = 2) entails that
QC2D has a number of special symmetry properties, which dramatically affect
the spectrum.

Turning to QCD itself, we saw that one can expect a nonzero quark con-
densate at zero chemical potential: σ := −〈q̄q〉1/3 �= 0, to give way to a diquark
condensate when the chemical potential exceeds ≈ 2σ, and at this point the
diquark gap is ≈ σ/2. The diquark condensate melts when the temperature ex-
ceeds ∼ 60 – 100 MeV; i.e., one-third to one-half of the chiral symmetry restoring
temperature in two-flavour QCD. These features are model-independent in the
sense that the many, disparate models applied recently to the problem yield
results in semi-quantitative agreement.
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Abstract. After a brief review of the phenomena expected in cold dense quark mat-
ter, color superconductivity and color-flavor locking, we sketch some implications of
recent developments in our understanding of cold dense quark matter for the physics
of compact stars. We give a more detailed summary of our recent work on crystalline
color superconductivity and the consequent realization that (some) pulsar glitches may
originate in quark matter.

1 Color Superconductivity and Color-Flavor Locking

Because QCD is asymptotically free, its high temperature and high baryon den-
sity phases are more simply and more appropriately described in terms of quarks
and gluons as degrees of freedom, rather than hadrons. The chiral symmetry
breaking condensate which characterizes the vacuum melts away. At high tem-
peratures, in the resulting quark-gluon plasma phase all of the symmetries of
the QCD Lagrangian are unbroken and the excitations have the quantum num-
bers of quarks and gluons. At high densities, on the other hand, quarks form
Cooper pairs and new condensates develop. The formation of such superconduct-
ing phases [1,2,3,4,5,6] requires only weak attractive interactions; these phases
may nevertheless break chiral symmetry [5] and have excitations with the same
quantum numbers as those in a confined phase [5,7,8,9]. These cold dense quark
matter phases may arise in the cores of neutron stars; understanding this region
of the QCD phase diagram requires an interplay between QCD and neutron star
phenomenology.

The relevant degrees of freedom in cold dense quark matter are those which
involve quarks with momenta near the Fermi surface. At high density, where the
quark number chemical potential μ (and hence the quark Fermi momentum) is
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large, the QCD gauge coupling g(μ) is small. However, because of the infinite de-
generacy among pairs of quarks with equal and opposite momenta at the Fermi
surface, even an arbitrarily weak attraction between quarks renders the Fermi
surface unstable to the formation of a condensate of quark Cooper pairs. Creat-
ing a pair costs no free energy at the Fermi surface and the attractive interaction
results in a free energy benefit. Pairs of quarks cannot be color singlets, and in
QCD with two flavors of massless quarks, they form in the (attractive) color 3̄
channel in which the quarks in a Cooper pair are color-antisymmetric [1,2,3,4].
The resulting condensate creates a gap Δ at the Fermi surfaces of quarks with
two out of three colors, but quarks of the third color remain gapless. Five glu-
ons get a Meissner mass by the Anderson-Higgs mechanism [10]; a SU(2)color
subgroup remains unbroken. The Cooper pairs are flavor singlets and no fla-
vor symmetries are broken. There is also an unbroken global symmetry which
plays the role of U(1)B . Thus, no global symmetries are broken in this 2SC
phase. There must therefore be a phase transition between the hadronic and
2SC phases at which chiral symmetry is restored. This phase transition is first
order [3,11,12,13] since it involves a competition between chiral condensation
and diquark condensation [11,13].

In QCD with three flavors of massless quarks, the Cooper pairs cannot be
flavor singlets, and both color and flavor symmetries are necessarily broken.
The symmetries of the phase which results have been analyzed in [5,7]. The
attractive channel favored by one-gluon exchange exhibits “color-flavor locking.”
A condensate of the form

〈ψαa
L ψβb

L 〉 ∝ ΔεαβAεabA (1)

involving left-handed quarks alone, with α, β color indices and a, b flavor in-
dices, locks SU(3)L flavor rotations to SU(3)color: the condensate is not symmet-
ric under either alone, but is symmetric under the simultaneous SU(3)L+color
rotations.1 A condensate involving right-handed quarks alone locks SU(3)R

flavor rotations to SU(3)color. Because color is vectorial, the combined ef-
fect of the LL and RR condensates is to lock SU(3)L to SU(3)R, break-
ing chiral symmetry.2 Thus, in quark matter with three massless quarks, the
SU(3)color×SU(3)L×SU(3)R×U(1)B symmetry is broken down to the global
diagonal SU(3)color+L+R group. A gauged U(1) subgroup of the original symme-
try group — a linear combination of one color generator and electromagnetism,
which lives within SU(3)L × SU(3)R — also remains unbroken. All nine quarks
have a gap. All eight gluons get a mass [5,15]. There are nine massless Nambu-
Goldstone bosons. All the quarks, all the massive vector bosons, and all the
1 It turns out [5] that condensation in the color 3̄ channel induces a condensate in

the color 6 channel because this breaks no further symmetries [8]. The resulting
condensates can be written in terms of κ1 and κ2 where 〈ψαa

L ψβb
L 〉 ∼ κ1δ

αaδβb +
κ2δ

αbδβa. Here, the Kronecker δ’s lock color and flavor rotations. The pure color 3̄
condensate (1) has κ2 = −κ1.

2 Once chiral symmetry is broken by color-flavor locking, there is no symmetry argu-
ment precluding the existence of an ordinary chiral condensate. Indeed, instanton
effects do induce a nonzero 〈q̄q〉 [5], but this is a small effect [14].
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Nambu-Goldstone bosons have integer charges under the unbroken gauged U(1)
symmetry, which therefore plays the role of electromagnetism. The CFL phase
therefore has the same symmetries (and many similar non-universal features) as
baryonic matter with a condensate of Cooper pairs of baryons [7]. This raises
the possibility that quark matter and baryonic matter may be continuously con-
nected [7].

Nature chooses two light quarks and one middle-weight strange quark,
rather than three degenerate quarks. A nonzero ms weakens condensates which
involve pairing between light and strange quarks. The CFL phase requires 〈us〉
and 〈ds〉 condensates; such condensates which pair quarks with differing Fermi
momenta can only exist if the resulting gaps are larger than of order m2

s/2μ,
the difference between u and s Fermi momenta in the absence of pairing. This
means that upon increasing ms at fixed μ, one must find a first-order unlocking
transition [8,9]: for larger ms only u and d quarks pair and the 2SC phase is
obtained. For any ms �= ∞, the CFL phase is the ground state at arbitrarily
high density [8]. For large values of ms, there is a 2SC interlude: as a function of
increasing μ, one finds a first order phase transition at which hadronic matter is
replaced by quark matter in the 2SC phase and a subsequent first order phase
transition at a higher μ above which CFL quark matter takes over. For smaller
values of ms, the possibility of quark-hadron continuity [7] arises.3

Much effort has gone into estimating the magnitude of the gaps in the
2SC and CFL phases, and the consequent critical temperature above which
quark matter ceases to be superconducting. It would be ideal if this task were
within the scope of lattice gauge theory. Unfortunately, lattice methods relying
on importance sampling have to this point been rendered exponentially imprac-
tical at nonzero baryon density by the complex action at nonzero μ. There are
more sophisticated algorithms which have allowed the simulation of theories
which are simpler than QCD but which have as severe a fermion sign prob-
lem as that in QCD at nonzero chemical potential [16]. This bodes well for
the future.4 Given the current absence of suitable lattice methods, the mag-
3 Note that even if the strange and light quarks are not degenerate, the CFL phase

may be continuous with a baryonic phase which is dense enough that the Fermi
momenta of all the nucleons and hyperons are comparable; there must, however, be
phase transition(s) between this hypernuclear phase and ordinary nuclear matter [8].

4 Note that quark pairing can be studied on the lattice in some models with four-
fermion interactions and in two-color QCD [17]. The Nc = 2 case has also been
studied analytically in Refs. [4,18]; pairing in this theory is simpler to analyze because
quark Cooper pairs are color singlets. The Nc → ∞ limit of QCD is often one
in which hard problems become tractable. However, the ground state of Nc = ∞
QCD is a chiral density wave, not a color superconductor [19]. At asymptotically
high densities color superconductivity persists up to Nc’s of order thousands [20,21]
before being supplanted by the phase described in Ref. [19]. At any finite Nc, color
superconductivity occurs at arbitrarily weak coupling whereas the chiral density
wave does not. For Nc = 3, color superconductivity is still favored over the chiral
density wave (although not by much) even if the interaction is so strong that the
color superconductivity gap is ∼ μ/2 [22].
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nitude of the gaps in quark matter at large but accessible μ has been esti-
mated using two broad strategies. The first class of estimates are done within
the context of models whose parameters are chosen to reproduce zero density
physics [3,4,11,5,8,9,13,14,23,24,25,22]. The second strategy for estimating gaps
and critical temperatures is to use μ = ∞ physics as a guide. At asymptot-
ically large μ, models with short-range interactions are bound to fail because
the dominant interaction is due to the long-range magnetic interaction coming
from single-gluon exchange [12,26]. The collinear infrared divergence in small an-
gle scattering via one-gluon exchange (which is regulated by dynamical screen-
ing [26]) results in a gap which is parametrically larger at μ → ∞ than it
would be for any point-like four-fermion interaction [26]. Weak coupling esti-
mates of the gap [26,27,28,29,30,31,32,33,34,35,36,37,38] are valid at asymptot-
ically high densities, with chemical potentials μ � 108 MeV [37]. Neither class
of methods can be trusted quantitatively for quark number chemical potentials
μ ∼ 400−500 MeV, as appropriate for the quark matter which may occur in the
cores of neutron stars. It is nevertheless satisfying that two very different ap-
proaches, one using zero density phenomenology to normalize models, the other
using weak-coupling methods valid at asymptotically high density, yield predic-
tions for the gaps and critical temperatures at accessible densities which are in
good agreement: the gaps at the Fermi surface are of order tens to 100 MeV,
with critical temperatures about half as large.

Tc ∼ 50 MeV is much larger relative to the Fermi momentum than in low
temperature superconductivity in metals. This reflects the fact that color super-
conductivity is induced by an attraction due to the primary, strong, interaction
in the theory, rather than having to rely on much weaker secondary interactions,
as in phonon mediated superconductivity in metals. Quark matter is a high-Tc

superconductor by any reasonable definition. Its Tc is nevertheless low enough
that it is unlikely the phenomenon can be realized in heavy ion collisions.

2 Color Superconductivity in Compact Stars

Our current understanding of the color superconducting state of quark matter
leads us to believe that it may occur naturally in compact stars. The critical tem-
perature Tc below which quark matter is a color superconductor is high enough
that any quark matter which occurs within neutron stars that are more than
a few seconds old is in a color superconducting state. In the absence of lattice
simulations, present theoretical methods are not accurate enough to determine
whether neutron star cores are made of hadronic matter or quark matter. They
also cannot determine whether any quark matter which arises will be in the CFL
or 2SC phase: the difference between the u, d and s Fermi momenta will be a
few tens of MeV which is comparable to estimates of the gap Δ; the CFL phase
occurs when Δ is large compared to all differences between Fermi momenta. Just
as the higher temperature regions of the QCD phase diagram are being mapped
out in heavy ion collisions, we need to learn how to use neutron star phenom-
ena to determine whether they feature cores made of 2SC quark matter, CFL
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quark matter or hadronic matter, thus teaching us about the high density region
of the QCD phase diagram. It is therefore important to look for astrophysical
consequences of color superconductivity.

2.1 Equation of State

Much of the work on the consequences of quark matter within a compact star has
focussed on the effects of quark matter on the equation of state, and hence on
the radius of the star. As a Fermi surface phenomenon, color superconductivity
has little effect on the equation of state: the pressure is an integral over the
whole Fermi volume. Color superconductivity modifies the equation of state at
the ∼ (Δ/μ)2 level, typically by a few percent [3]. Such small effects can be
neglected in present calculations, and for this reason we will not attempt to
survey the many ways in which observations of neutron stars are being used to
constrain the equation of state [39].

We will describe one current idea, however. As a neutron star in a low mass
X-ray binary (LMXB) is spun up by accretion from its companion, it becomes
more oblate and its central density decreases. If it contains a quark matter core,
the volume fraction occupied by this core decreases, the star expands, and its
moment of inertia increases. This raises the possibility [40] of a period during the
spin-up history of an LMXB when the neutron star is gaining angular momen-
tum via accretion, but is gaining sufficient moment of inertia that its angular
frequency is hardly increasing. In their modelling of this effect, Glendenning
and Weber [40] discover that LMXB’s should spend a significant fraction of
their history with a frequency of around 200 Hz, while their quark cores are
being spun out of existence, before eventually spinning up to higher frequencies.
This may explain the observation that LMXB frequencies are clustered around
250-350 Hz [41], which is otherwise puzzling in that it is thought that LMXB’s
provide the link between canonical pulsars and millisecond pulsars, which have
frequencies as large as 600 Hz [42]. It will be interesting to see how robust the
result of Ref. [40] is to changes in model assumptions and also how its predictions
fare when compared to those of other explanations which posit upper bounds on
LMXB frequencies [43], rather than a most probable frequency range with no as-
sociated upper bound [40]. We note here that because Glendenning and Weber’s
effect depends only on the equation of state and not on other properties of quark
matter, the fact that the quark matter must in fact be a color superconductor
will not affect the results in any significant way. If Glendenning and Weber’s
explanation for the observed clustering of LMXB frequencies proves robust, it
would imply that pulsars with lower rotational frequencies feature quark matter
cores.

2.2 Cooling by Neutrino Emission

We turn now to neutron star phenomena which are affected by Fermi surface
physics. For the first 105−6 years of its life, the cooling of a neutron star is
governed by the balance between heat capacity and the loss of heat by neutrino
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emission. How are these quantities affected by the presence of a quark matter
core? This has been addressed recently in Refs. [44,45], following earlier work
in Ref. [46]. Both the specific heat CV and the neutrino emission rate Lν are
dominated by physics within T of the Fermi surface. If, as in the CFL phase,
all quarks have a gap Δ � T then the contribution of quark quasiparticles to
CV and Lν is suppressed by ∼ exp(−Δ/T ). There may be other contributions
to Lν [44], but these are also very small. The specific heat is dominated by that
of the electrons, although it may also receive a small contribution from the CFL
phase Goldstone bosons. Although further work is required, it is already clear
that both CV and Lν are much smaller than in the nuclear matter outside the
quark matter core. This means that the total heat capacity and the total neutrino
emission rate (and hence the cooling rate) of a neutron star with a CFL core
will be determined completely by the nuclear matter outside the core. The quark
matter core is “inert”: with its small heat capacity and emission rate it has little
influence on the temperature of the star as a whole. As the rest of the star emits
neutrinos and cools, the core cools by conduction, because the electrons keep it
in good thermal contact with the rest of the star. These qualitative expectations
are nicely borne out in the calculations presented by Page et al. [45].

The analysis of the cooling history of a neutron star with a quark matter
core in the 2SC phase is more complicated. The red and green up and down
quarks pair with a gap many orders of magnitude larger than the temperature,
which is of order 10 keV, and are therefore inert as described above. Any strange
quarks present will form a 〈ss〉 condensate with angular momentum J = 1 which
locks to color in such a way that rotational invariance is not broken [47]. The
resulting gap has been estimated to be of order hundreds of keV [47], although
applying results of Ref. [48] suggests a somewhat smaller gap, around 10 keV.
The blue up and down quarks also pair, forming a J = 1 condensate which breaks
rotational invariance [3]. The related gap was estimated to be a few keV [3], but
this estimate was not robust and should be revisited in light of more recent
developments given its importance in the following. The critical temperature
Tc above which no condensate forms is of order the zero-temperature gap Δ.
(Tc = 0.57Δ for J = 0 condensates [27].) Therefore, if there are quarks for
which Δ ∼ T or smaller, these quarks do not pair at temperature T . Such
quark quasiparticles will radiate neutrinos rapidly (via direct URCA reactions
like d → u + e + ν̄, u → d + e+ + ν, etc.) and the quark matter core will cool
rapidly and determine the cooling history of the star as a whole [46,45]. The star
will cool rapidly until its interior temperature is T < Tc ∼ Δ, at which time
the quark matter core will become inert and the further cooling history will be
dominated by neutrino emission from the nuclear matter fraction of the star. If
future data were to show that neutron stars first cool rapidly (direct URCA) and
then cool more slowly, such data would allow an estimate of the smallest quark
matter gap. We are unlikely to be so lucky. The simple observation of rapid
cooling would not be an unambiguous discovery of quark matter with small
gaps; there are other circumstances in which the direct URCA processes occur.
However, if as data on neutron star temperatures improves in coming years the
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standard cooling scenario proves correct, indicating the absence of the direct
URCA processes, this would rule out the presence of quark matter with gaps in
the 10 keV range or smaller. The presence of a quark matter core in which all
gaps are � T can never be revealed by an analysis of the cooling history.

2.3 Supernova Neutrinos

We now turn from neutrino emission from a neutron star which is many years
old to that from the protoneutron star during the first seconds of a supernova.
Carter and Reddy [49] have pointed out that when this protoneutron star is
at its maximum temperature of order 30-50 MeV, it may have a quark mat-
ter core which is too hot for color superconductivity. As such a protoneutron
star core cools over the next few seconds, this quark matter will cool through
Tc, entering the color superconducting regime of the QCD phase diagram. For
T ∼ Tc, the specific heat rises and the cooling slows. Then, as T drops fur-
ther and Δ increases to become greater than T , the specific heat drops rapidly.
Furthermore, as the number density of quark quasiparticles becomes suppressed
by exp(−Δ/T ), the neutrino transport mean free path rapidly becomes very
long [49]. This means that all the neutrinos previously trapped in the now color
superconducting core are able to escape in a sudden burst. If a terrestrial neu-
trino detector sees thousands of neutrinos from a future supernova, Carter and
Reddy’s results suggest that there may be a signature of the transition to color
superconductivity present in the time distribution of these neutrinos. Neutrinos
from the core of the protoneutron star will lose energy as they scatter on their
way out, but because they will be the last to reach the surface of last scattering,
they will be the final neutrinos received at the earth. If they are released from
the quark matter core in a sudden burst, they may therefore result in a bump at
late times in the temporal distribution of the detected neutrinos. More detailed
study remains to be done in order to understand how Carter and Reddy’s sig-
nature, dramatic when the neutrinos escape from the core, is processed as the
neutrinos traverse the rest of the protoneutron star and reach their surface of
last scattering.

2.4 R-mode Instabilities

Another arena in which color superconductivity comes into play is the physics of
r-mode instabilities. A neutron star whose angular rotation frequency Ω is large
enough is unstable to the growth of r-mode oscillations which radiate away angu-
lar momentum via gravitational waves, reducing Ω. What does “large enough”
mean? The answer depends on the damping mechanisms which act to prevent
the growth of the relevant modes. Both shear viscosity and bulk viscosity act to
damp the r-modes, preventing them from going unstable. The bulk viscosity and
the quark contribution to the shear viscosity both become exponentially small in
quark matter with Δ > T and as a result, as Madsen [50] has shown, a compact
star made entirely of quark matter with gaps Δ = 1 MeV or greater is unstable if
its spin frequency is greater than tens to 100 Hz. Many compact stars spin faster
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than this, and Madsen therefore argues that compact stars cannot be strange
quark stars unless some quarks remain ungapped. Alas, this powerful argument
becomes much less powerful in the context of a neutron star with a quark matter
core. First, the r-mode oscillations have a wave form whose amplitude is largest
at large radius, outside the core. Second, in an ordinary neutron star there is a
new source of damping: friction at the boundary between the crust and the neu-
tron superfluid “mantle” keeps the r-modes stable regardless of the properties
of a quark matter core [51,50].

2.5 Magnetic Field Evolution

Next, we turn to the physics of magnetic fields within color superconducting neu-
tron star cores [52,53]. The interior of a conventional neutron star is a superfluid
(because of neutron-neutron pairing) and is an electromagnetic superconductor
(because of proton-proton pairing). Ordinary magnetic fields penetrate it only
in the cores of magnetic flux tubes. A color superconductor behaves differently.
At first glance, it seems that because a diquark Cooper pair has nonzero elec-
tric charge, a diquark condensate must exhibit the standard Meissner effect,
expelling ordinary magnetic fields or restricting them to flux tubes within whose
cores the condensate vanishes. This is not the case [53]. In both the 2SC and
CFL phase a linear combination of the U(1) gauge transformation of ordinary
electromagnetism and one (the eighth) color gauge transformation remains un-
broken even in the presence of the condensate. This means that the ordinary
photon Aμ and the eighth gluon G8

μ are replaced by new linear combinations

AQ̃
μ = cosα0 Aμ + sinα0 G

8
μ

AX
μ = − sinα0 Aμ + cosα0 G

8
μ (2)

where AQ̃
μ is massless and AX

μ is massive. That is, BQ̃ satisfies the ordinary
Maxwell equations while BX experiences a Meissner effect. The mixing angle α0
is the analogue of the Weinberg angle in electroweak theory, in which the pres-
ence of the Higgs condensate causes the AY

μ and the third SU(2)W gauge boson
to mix to form the photon, Aμ, and the massive Z boson. sin(α0) is proportional
to e/g and turns out to be about 1/20 in the 2SC phase and 1/40 in the CFL
phase [53]. This means that the Q̃-photon which propagates in color supercon-
ducting quark matter is mostly photon with only a small gluon admixture. If
a color superconducting neutron star core is subjected to an ordinary magnetic
field, it will either expel the X component of the flux or restrict it to flux tubes,
but it can (and does [53]) admit the great majority of the flux in the form of
a BQ̃ magnetic field satisfying Maxwell’s equations. The decay in time of this
“free field” (i.e. not in flux tubes) is limited by the Q̃-conductivity of the quark
matter. A color superconductor is not a Q̃-superconductor — that is the whole
point — but it turns out to be a very good Q̃-conductor due to the presence
of electrons: the BQ̃ magnetic field decays only on a time scale which is much
longer than the age of the universe [53]. This means that a quark matter core
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within a neutron star serves as an “anchor” for the magnetic field: whereas in
ordinary nuclear matter the magnetic flux tubes can be dragged outward by the
neutron superfluid vortices as the star spins down [54], the magnetic flux within
the color superconducting core simply cannot decay. Even though this distinc-
tion is a qualitative one, it will be difficult to confront it with data since what is
observed is the total dipole moment of the neutron star. A color superconducting
core anchors those magnetic flux lines which pass through the core, while in a
neutron star with no quark matter core the entire internal magnetic field can
decay over time. In both cases, however, the total dipole moment can change
since the magnetic flux lines which do not pass through the core can move.

3 Crystalline Color Superconductivity and Glitches
in Quark Matter

The final consequence of color superconductivity we wish to discuss is the possi-
bility that (some) glitches may originate within quark matter regions of a com-
pact star [48]. In any context in which color superconductivity arises in nature, it
is likely to involve pairing between species of quarks with differing chemical po-
tentials. If the chemical potential difference is small enough, BCS pairing occurs
as we have been discussing. If the Fermi surfaces are too far apart, no pairing
between the species is possible. The transition between the BCS and unpaired
states as the splitting between Fermi momenta increases has been studied in
electron superconductors [55], nuclear superfluids [56] and QCD superconduc-
tors [8,9,57], assuming that no other state intervenes. However, there is good
reason to think that another state can occur. This is the “LOFF” state, first
explored by Larkin and Ovchinnikov [58] and Fulde and Ferrell [59] in the con-
text of electron superconductivity in the presence of magnetic impurities. They
found that near the unpairing transition, it is favorable to form a state in which
the Cooper pairs have nonzero momentum. This is favored because it gives rise
to a region of phase space where each of the two quarks in a pair can be close
to its Fermi surface, and such pairs can be created at low cost in free energy.
Condensates of this sort spontaneously break translational and rotational invari-
ance, leading to gaps which vary periodically in a crystalline pattern. If in some
shell within the quark matter core of a neutron star (or within a strange quark
star) the quark number densities are such that crystalline color superconductiv-
ity arises, rotational vortices may be pinned in this shell, making it a locus for
glitch phenomena.

In Ref. [48], we have explored the range of parameters for which crystalline
color superconductivity occurs in the QCD phase diagram, upon making vari-
ous simplifying assumptions. We focus primarily on a toy model in which the
quarks interact via a four-fermion interaction with the quantum numbers of sin-
gle gluon exchange. Also, we only consider pairing between u and d quarks, with
μd = μ̄ + δμ and μu = μ̄ − δμ, whereas we expect a LOFF state wherever the
difference between the Fermi momenta of any two quark flavors is near an un-
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pairing transition, including, for example, near the unlocking phase transition
between the 2SC and CFL phases.

In the LOFF state, each Cooper pair carries momentum 2q with |q| ≈ 1.2δμ.
The condensate and gap parameter vary in space with wavelength π/|q|. In
Ref. [48], we simplify the calculation by assuming that the condensate varies in
space like a plane wave, leaving the determination of the crystal structure of
the QCD LOFF phase to future work. We give an ansatz for the LOFF wave
function, and by variation obtain a gap equation which allows us to solve for the
gap parameter ΔA, the free energy and the values of the diquark condensates
which characterize the LOFF state at a given δμ and |q|. We then vary |q|, to
find the preferred (lowest free energy) LOFF state at a given δμ, and compare the
free energy of the LOFF state to that of the BCS state with which it competes.
We show results for one choice of parameters5 in Fig. 1(a). The LOFF state
is characterized by a gap parameter ΔA and a diquark condensate, but not by
an energy gap in the dispersion relation: we obtain the quasiparticle dispersion
relations [48] and find that they vary with the direction of the momentum,
yielding gaps that vary from zero up to a maximum of ΔA. The condensate is
dominated by the regions in momentum space in which a quark pair with total
momentum 2q has both members of the pair within ∼ ΔA of their respective
Fermi surfaces.

Because it violates rotational invariance by involving Cooper pairs whose
momenta are not antiparallel, the quark matter LOFF state necessarily features
condensates in both the J = 0 and J = 1 channels. (Cooper pairs in the sym-
metric J = 1 channel are antisymmetric in color but symmetric in flavor, and
are impossible in the original LOFF context of pairing between electrons, which
have neither color nor flavor.) Both J = 0 and J = 1 condensates are present
even if there is no interaction in the J = 1 channel, as is the case when we
use a four-fermion interaction with the quantum numbers of Lorentz-invariant
single gluon exchange. Because there is no interaction in the J = 1 channel, the
J = 1 condensate does not affect the quasiparticle dispersion relations; that is,
the J = 1 gap parameter vanishes.

The LOFF state is favored for values of δμ which satisfy δμ1 < δμ < δμ2
as shown in Fig. 1(b), with δμ1/Δ0 = 0.707 and δμ2/Δ0 = 0.754 in the weak
coupling limit in which Δ0 	 μ. (For δμ < δμ1, we have the 2SC phase with
gap Δ0.) At weak coupling, the LOFF gap parameter decreases from 0.23Δ0 at
δμ = δμ1 (where there is a first order BCS-LOFF phase transition) to zero at
δμ = δμ2 (where there is a second order LOFF-normal transition). Except for
very close to δμ2, the critical temperature above which the LOFF state melts will
be much higher than typical neutron star temperatures. At stronger coupling the
5 Our model Hamiltonian has two parameters, the four-fermion coupling G and a

cutoff Λ. We often use the value of Δ0, the BCS gap obtained at δμ = 0, to describe
the strength of the interaction: small Δ0 corresponds to small G. When we wish to
study the dependence on the cutoff, we vary Λ while at the same time varying the
coupling G such that Δ0 is kept fixed. We expect that the relation between other
physical quantities and Δ0 will be reasonably insensitive to variation of Λ.
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Fig. 1. (a) LOFF and BCS gap parameters as a function of δμ, with coupling chosen
so that Δ0 = 40 MeV. At each δμ we have varied |q| to find the LOFF state with the
lowest free energy. The vertical dashed line marks δμ = δμ1, the value of δμ above
which the LOFF state has lower free energy than BCS. (b) The interval of δμ within
which the LOFF state occurs as a function of the coupling, parametrized by the BCS
gap Δ0 shown in GeV. Here and in (a), the average quark chemical potential μ̄ has
been set to 0.4 GeV, corresponding to a baryon density of about 4 to 5 times that in
nuclear matter. A crude estimate [48] suggests that in quark matter at this density,
δμ ∼ 15 − 30 MeV depending on the value of the density-dependent effective strange
quark mass. Below the solid line, there is a LOFF state. Below the dashed line, the
BCS state is favored. The different lines of each type correspond to different cutoffs on
the four-fermion interaction: Λ = 0.8 GeV to 1.6 GeV. δμ1/Δ0 and δμ2/Δ0 show little
cutoff-dependence, and the cutoff-dependence disappears completely as Δ0, δμ → 0.
Λ = 1 GeV in (a).

LOFF gap parameter decreases relative to Δ0 and the window of δμ/Δ0 within
which the LOFF state is favored shrinks, as seen in Fig. 1(b). The single gluon
exchange interaction used in Fig. 1 is neither attractive nor repulsive in the J = 1
channel: the width of the LOFF window grows if the interaction is modified to
include an attraction in this channel [48].

Near the second-order critical point δμ2, we can describe the phase tran-
sition with a Ginzburg-Landau effective potential. The order parameter for the
LOFF-to-normal phase transition is

Φ(r) = −1
2
〈εabεαβ3ψ

aα(r)Cγ5ψ
bβ(r)〉 (3)

so that in the normal phase Φ(r) = 0, while in the LOFF phase Φ(r) = ΓAe
i2q·r.

(The gap parameter is related to the order parameter by ΔA = GΓA.) Expressing
the order parameter in terms of its Fourier modes Φ̃(k), we write the LOFF free
energy (relative to the normal state) as

F ({Φ̃(k)}) =
∑
k

(
C2(k2)|Φ̃(k)|2 + C4(k2)|Φ̃(k)|4 +O(|Φ̃|6)

)
. (4)

For δμ > δμ2, all of the C2(k2) are positive and the normal state is stable. Just
below the critical point, all of the modes Φ̃(k) are stable except those on the
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sphere |k| = 2q2, where q2 is the value of |q| at δμ2 (so that q2 � 1.2δμ2 � 0.9Δ0
at weak coupling). In general, many modes on this sphere can become nonzero,
giving a condensate with a complex crystal structure. We consider the simplest
case of a plane wave condensate where only the one mode Φ̃(k = 2q2) = ΓA is
nonvanishing. Dropping all other modes, we have

F (ΓA) = a(δμ− δμ2)(ΓA)2 + b(ΓA)4 (5)

where a and b are positive constants. Finding the minimum-energy solution for
δμ < δμ2, we obtain simple power-law relations for the condensate and the free
energy:

ΓA(δμ) = KΓ (δμ2 − δμ)1/2, F (δμ) = −KF (δμ2 − δμ)2. (6)

These expressions agree well with the numerical results obtained by solving the
gap equation [48]. The Ginzburg-Landau method does not specify the propor-
tionality factors KΓ and KF , but analytical expressions for these coefficients
can be obtained in the weak coupling limit by explicitly solving the gap equa-
tion [60,48], yielding

GKΓ = 2
√
δμ2
√

(q2/δμ2)2 − 1 � 1.15
√
Δ0

KF = (4μ̄2/π2)((q2/δμ2)2 − 1) � 0.178μ̄2.
(7)

Notice that because (δμ2 − δμ1)/δμ2 is small, the power-law relations (6) are a
good model of the system throughout the entire LOFF interval δμ1 < δμ < δμ2
where the LOFF phase is favored over the BCS phase. The Ginzburg-Landau
expression (5) gives the free energy of the LOFF phase near δμ2, but it cannot be
used to determine the location δμ1 of the first-order phase transition where the
LOFF window terminates. (Locating the first-order point requires a comparison
of LOFF and BCS free energies.)

The quark matter which may be present within a compact star will be in
the crystalline color superconductor (LOFF) state if δμ/Δ0 is in the requisite
range. For a reasonable value of δμ, say 25 MeV, this occurs if the gap Δ0 which
characterizes the uniform color superconductor present at smaller values of δμ
is about 40 MeV. This is in the middle of the range of present estimates. Both
δμ and Δ0 vary as a function of density and hence as a function of radius in
a compact star. Although it is too early to make quantitative predictions, the
numbers are such that crystalline color superconducting quark matter may very
well occur in a range of radii within a compact star. It is therefore worthwhile
to consider the consequences.

Many pulsars have been observed to glitch. Glitches are sudden jumps in
rotation frequency Ω which may be as large as ΔΩ/Ω ∼ 10−6, but may also
be several orders of magnitude smaller. The frequency of observed glitches is
statistically consistent with the hypothesis that all radio pulsars experience
glitches [61]. Glitches are thought to originate from interactions between the
rigid neutron star crust, typically somewhat more than a kilometer thick, and
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rotational vortices in a neutron superfluid. The inner kilometer of crust con-
sists of a crystal lattice of nuclei immersed in a neutron superfluid [62]. Because
the pulsar is spinning, the neutron superfluid (both within the inner crust and
deeper inside the star) is threaded with a regular array of rotational vortices. As
the pulsar’s spin gradually slows, these vortices must gradually move outwards
since the rotation frequency of a superfluid is proportional to the density of vor-
tices. Deep within the star, the vortices are free to move outwards. In the crust,
however, the vortices are pinned by their interaction with the nuclear lattice.
Models [63] differ in important respects as to how the stress associated with
pinned vortices is released in a glitch: for example, the vortices may break and
rearrange the crust, or a cluster of vortices may suddenly overcome the pinning
force and move macroscopically outward, with the sudden decrease in the angu-
lar momentum of the superfluid within the crust resulting in a sudden increase
in angular momentum of the rigid crust itself and hence a glitch. All the models
agree that the fundamental requirements are the presence of rotational vortices
in a superfluid and the presence of a rigid structure which impedes the motion of
vortices and which encompasses enough of the volume of the pulsar to contribute
significantly to the total moment of inertia.

Although it is premature to draw quantitative conclusions, it is interesting
to speculate that some glitches may originate deep within a pulsar which fea-
tures a quark matter core, in a region of that core which is in a LOFF crystalline
color superconductor phase. A three flavor analysis is required to estimate over
what range of densities LOFF phases may arise, as either 〈ud〉, 〈us〉 or 〈ds〉
condensates approach their unpairing transitions. Comparison to existing mod-
els which describe how pu

F , pd
F and ps

F vary within a quark matter core in a
neutron star [64] would then permit an estimate of how much the LOFF region
contributes to the moment of inertia of the pulsar. Furthermore, a three flavor
analysis is required to determine whether the LOFF phase is a superfluid. If the
only pairing is between u and d quarks, this 2SC phase is not a superfluid [3,8],
whereas if all three quarks pair in some way, a superfluid is obtained [5,8]. Hence-
forth, we suppose that the LOFF phase is a superfluid, which means that if it
occurs within a pulsar it will be threaded by an array of rotational vortices. It
is reasonable to expect that these vortices will be pinned in a LOFF crystal,
in which the diquark condensate varies periodically in space. Indeed, one of the
suggestions for how to look for a LOFF phase in terrestrial electron supercon-
ductors relies on the fact that the pinning of magnetic flux tubes (which, like the
rotational vortices of interest to us, have normal cores) is expected to be much
stronger in a LOFF phase than in a uniform BCS superconductor [65].

A real calculation of the pinning force experienced by a vortex in a crys-
talline color superconductor must await the determination of the crystal struc-
ture of the LOFF phase. We can, however, attempt an order of magnitude es-
timate along the same lines as that done by Anderson and Itoh [66] for neu-
tron vortices in the inner crust of a neutron star. In that context, this estimate
has since been made quantitative [67,68,63]. For one specific choice of param-
eters [48], the LOFF phase is favored over the normal phase by a free energy
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FLOFF ∼ 5× (10 MeV)4 and the spacing between nodes in the LOFF crystal is
b = π/(2|q|) ∼ 9 fm. The thickness of a rotational vortex is given by the cor-
relation length ξ ∼ 1/Δ ∼ 25 fm. The pinning energy is the difference between
the energy of a section of vortex of length b which is centered on a node of the
LOFF crystal vs. one which is centered on a maximum of the LOFF crystal. It
is of order Ep ∼ FLOFF b3 ∼ 4 MeV. The resulting pinning force per unit length
of vortex is of order fp ∼ Ep/b

2 ∼ (4 MeV)/(80 fm2). A complete calculation
will be challenging because b < ξ, and is likely to yield an fp which is somewhat
less than that we have obtained by dimensional analysis. Note that our estimate
of fp is quite uncertain both because it is only based on dimensional analysis
and because the values of Δ, b and FLOFF are uncertain. (We have a good un-
derstanding of all the ratios Δ/Δ0, δμ/Δ0, q/Δ0 and consequently bΔ0 in the
LOFF phase. It is of course the value of the BCS gap Δ0 which is uncertain.) It
is premature to compare our crude result to the results of serious calculations of
the pinning of crustal neutron vortices as in Refs. [67,68,63]. It is nevertheless
remarkable that they prove to be similar: the pinning energy of neutron vortices
in the inner crust is Ep ≈ 1 − 3 MeV and the pinning force per unit length is
fp ≈ (1− 3 MeV)/(200− 400 fm2).

The reader may be concerned that a glitch deep within the quark matter core
of a neutron star may not be observable: the vortices within the crystalline color
superconductor region suddenly unpin and leap outward; this loss of angular
momentum is compensated by a gain in angular momentum of the layer outside
the LOFF region; how quickly, then, does this increase in angular momentum
manifest itself at the surface of the star as a glitch? The important point here
is that the rotation of any superfluid region within which the vortices are able
to move freely is coupled to the rotation of the outer crust on very short time
scales [69]. This rapid coupling, due to electron scattering off vortices and the
fact that the electron fluid penetrates throughout the star, is usually invoked to
explain that the core nucleon superfluid speeds up quickly after a crustal glitch:
the only long relaxation time is that of the vortices within the inner crust [69].
Here, we invoke it to explain that the outer crust speeds up rapidly after a LOFF
glitch has accelerated the quark matter at the base of the nucleon superfluid.
After a glitch in the LOFF region, the only long relaxation times are those of
the vortices in the LOFF region and in the inner crust.

A quantitative theory of glitches originating within quark matter in a LOFF
phase must await further calculations, in particular a three flavor analysis and
the determination of the crystal structure of the QCD LOFF phase. However,
our rough estimate of the pinning force on rotational vortices in a LOFF region
suggests that this force may be comparable to that on vortices in the inner crust
of a conventional neutron star. Perhaps, therefore, glitches occurring in a region
of crystalline color superconducting quark matter may yield similar phenomenol-
ogy to those occurring in the inner crust. This is surely strong motivation for
further investigation.

Perhaps the most interesting consequence of these speculations arises in the
context of compact stars made entirely of strange quark matter . The work of
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Witten [70] and Farhi and Jaffe [71] raised the possibility that strange quark
matter may be stable relative to nuclear matter even at zero pressure. If this
is the case it raises the question whether observed compact stars—pulsars, for
example—are strange quark stars [72,73] rather than neutron stars. A conven-
tional neutron star may feature a core made of strange quark matter, as we have
been discussing above.6 Strange quark stars, on the other hand, are made (al-
most) entirely of quark matter with either no hadronic matter content at all or
with a thin crust, of order one hundred meters thick, which contains no neutron
superfluid [73,74]. The nuclei in this thin crust are supported above the quark
matter by electrostatic forces; these forces cannot support a neutron fluid. Be-
cause of the absence of superfluid neutrons, and because of the thinness of the
crust, no successful models of glitches in the crust of a strange quark star have
been proposed. Since pulsars are observed to glitch, the apparent lack of a glitch
mechanism for strange quark stars has been the strongest argument that pulsars
cannot be strange quark stars [75,76,77]. This conclusion must now be revisited.

Madsen’s conclusion [50] that a strange quark star is prone to r-mode insta-
bility due to the absence of damping must also be revisited, since the relevant
oscillations may be damped within or at the boundary of a crystalline color
superconductor region.

The quark matter in a strange quark star, should one exist, would be a
color superconductor. Depending on the mass of the star, the quark number
densities increase by a factor of about two to ten in going from the surface to the
center [73]. This means that the chemical potential differences among the three
quarks will vary also, and there could be a range of radii within which the quark
matter is in a crystalline color superconductor phase. This raises the possibility
of glitches in strange quark stars. Because the variation in density with radius
is gradual, if a shell of LOFF quark matter exists it need not be particularly
thin. And, we have seen, the pinning forces may be comparable in magnitude
to those in the inner crust of a conventional neutron star. It has recently been
suggested (for reasons unrelated to our considerations) that certain accreting
compact stars may be strange quark stars [78], although the evidence is far from
unambiguous [79]. In contrast, it has been thought that, because they glitch,
conventional radio pulsars cannot be strange quark stars. Our work questions
this assertion by raising the possibility that glitches may originate within a layer
of quark matter which is in a crystalline color superconducting state.

There has been much recent progress in our understanding of how the pres-
ence of color superconducting quark matter in a compact star would affect five
different phenomena: cooling by neutrino emission, the pattern of the arrival
times of supernova neutrinos, the evolution of neutron star magnetic fields, r-
mode instabilities and glitches. Nevertheless, much theoretical work remains to
be done before we can make sharp proposals for which astrophysical observations
6 Note that a convincing discovery of a quark matter core within an otherwise hadronic

neutron star would demonstrate conclusively that strange quark matter is not stable
at zero pressure, thus ruling out the existence of strange quark stars. It is not possible
for neutron stars with quark matter cores and strange quark stars to both be stable.
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can teach us whether compact stars contain quark matter, and if so whether it
is in the 2SC or CFL phase.
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den Heuvel, eds., (Kluwer, Dordrecht: 1989) 457; and D. Bhattacharya and G.
Srinivasan, in X-Ray Binaries, W. H. G. Lewin, J. van Paradijs, and E. P. J. van
den Heuvel eds., (Cambridge University Press, 1995) 495.

55. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962); B. S. Chandrasekhar, App. Phys.
Lett. 1, 7 (1962).

56. A. Sedrakian and U. Lombardo, Phys. Rev. Lett. 84, 602 (2000).
57. P. F. Bedaque, hep-ph/9910247.
58. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964);

translation: Sov. Phys. JETP 20, 762 (1965).
59. P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
60. S. Takada and T. Izuyama, Prog. Theor. Phys. 41, 635 (1969).
61. M. A. Alpar and C. Ho, Mon. Not. R. Astron. Soc. 204, 655 (1983). For a recent

review, see A.G. Lyne in Pulsars: Problems and Progress, S. Johnston, M. A.
Walker and M. Bailes, eds., 73 (ASP, 1996).

62. J. Negele and D. Vautherin, Nucl. Phys. A207, 298 (1973).
63. For reviews, see D. Pines and A. Alpar, Nature 316, 27 (1985); D. Pines, in Neu-

tron Stars: Theory and Observation, J. Ventura and D. Pines, eds., 57 (Kluwer,
1991); M. A. Alpar, in The Lives of Neutron Stars, M. A. Alpar et al., eds., 185
(Kluwer, 1995). For more recent developments and references to further work,
see M. Ruderman, Astrophys. J. 382, 587 (1991); R. I. Epstein and G. Baym,
Astrophys. J. 387, 276 (1992); M. A. Alpar, H. F. Chau, K. S. Cheng and D.
Pines, Astrophys. J. 409, 345 (1993); B. Link and R. I. Epstein, Astrophys. J.
457, 844 (1996); M. Ruderman, T. Zhu, and K. Chen, Astrophys. J. 492, 267
(1998); A. Sedrakian and J. M. Cordes, Mon. Not. R. Astron. Soc. 307, 365
(1999).

64. N. K. Glendenning, Phys. Rev. D46, 1274 (1992); N. K. Glendenning, Compact
Stars (Springer-Verlag, 1997); F. Weber, J. Phys. G. Nucl. Part. Phys. 25, R195
(1999).

65. R. Modler et al., Phys. Rev. Lett. 76, 1292 (1996).
66. P. W. Anderson and N. Itoh, Nature 256, 25 (1975).
67. M. A. Alpar, Astrophys. J. 213, 527 (1977).
68. M. A. Alpar, P. W. Anderson, D. Pines and J. Shaham, Astrophys. J. 278, 791

(1984).
69. M. A. Alpar, S. A. Langer and J. A. Sauls, Astrophys. J. 282, 533 (1984).
70. E. Witten, Phys. Rev. D30, 272 (1984).
71. E. Farhi and R. L. Jaffe, Phys. Rev. D30, 2379 (1984).
72. P. Haensel, J. L. Zdunik and R. Schaeffer, Astron. Astrophys. 160, 121 (1986).
73. C. Alcock, E. Farhi and A. Olinto, Phys. Rev. Lett. 57, 2088 (1986); Astrophys.

J. 310, 261 (1986).
74. N. K. Glendenning and F. Weber, Astrophys. J. 400, 647 (1992).
75. A. Alpar, Phys. Rev. Lett. 58, 2152 (1987).
76. J. Madsen, Phys. Rev. Lett. 61, 2909 (1988).
77. R. R. Caldwell and J. L. Friedman, Phys. Lett. B264, 143 (1991).
78. X.-D. Li, I. Bombaci, M. Dey, J. Dey, E. P. J. van den Heuvel, Phys. Rev. Lett.

83, 3776 (1999); X.-D. Li, S. Ray, J. Dey, M. Dey, I. Bombaci, Astrophys. J.
527, L51 (1999); B. Datta, A. V. Thampan, I. Bombaci, Astron.&Astrophys.
355, L19, (2000). ; I. Bombaci, astro-ph/0002524.

79. D. Psaltis and D. Chakrabarty, Astrophys. J. 521, 332 (1999); D. Chakrabarty,
Phys. World 13, No. 2, 26 (2000).



Strange Quark Stars: Structural Properties
and Possible Signatures for Their Existence

Ignazio Bombaci

Dipartimento di Fisica “E. Fermi”, Universitá di Pisa, and INFN Sezione di Pisa,
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Abstract. We give a brief introduction to the physics of strange quark matter, and
explore the possibility this novel deconfined phase of matter might be absolutely sta-
ble. Strange quark stars represent one of the most intriguing consequences of such a
possibility. We study the structural properties of this hypothetical new class of stellar
compact objects, both for non-rotating and rapidly rotating configurations in general
relativity. Next, using recent observational data for the X-ray burster 4U 1820–30, the
newly discovered millisecond X-ray pulsar SAX J1808.4–3658, and for the atoll source
4U 1728–34, we argue that the compact stars in these X-ray sources are likely strange
star candidates. Finally, we study the conversion of a neutron star to a strange quark
star. We show that the total amount of energy liberated in the conversion process is in
the range (1 – 4) ×1053 erg, in agreement with the energy required to power gamma-ray
bursts at cosmological distances.

1 Introduction

The core of a neutron star is one of the best candidates in the Universe where
a deconfined phase of quark matter (QM) could be found. This possibility was
realized by several researchers [1,2,3,4,5,6] soon after the introduction of quarks
as the fundamental building blocks of hadrons.

Even more intriguing than the existence of a quark core in a neutron star, is
the possible existence of a new family of compact stars consisting completely of a
deconfined mixture of up (u), down (d), and strange (s) quarks, together with an
appropriate number of electrons to guarantee electrical neutrality. Such compact
stars have been referred to in the literature, as strange quark stars or shortly
strange stars (SS), and their constituent matter as strange quark matter (SQM).
The investigation of such a possibility is relevant not only for astrophysics, but
for high energy physics too. In fact, the search for a deconfined phase of quark
matter is one of the main goals in heavy ion physics. Experiments at Brookhaven
National Lab’s Relativistic Heavy Ion Collider (RHIC) and at CERN’s Large
Hadron Collider (LHC), will hopefully clarify this issue in the near future.

The possible existence of SS is a direct consequence of the so called strange
matter hypothesis [7,8,9]. According to this hypothesis, SQM could be the true
ground state of matter. In other words, the energy per baryon of SQM (at the
baryon density where the pressure is equal to zero) is supposed to be less than
the lowest energy per baryon found in nuclei, which is about 930 MeV for 56Fe.

D. Blaschke, N.K. Glendenning, and A. Sedrakian (Eds.): LNP 578, pp. 253–284, 2001.
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If the strange matter hypothesis is true, then a nucleus with A nucleons,
could in principle lower its energy by converting to a strangelet (a drop of SQM).
However, this process requires a very high-order simultaneous weak interactions
to convert about a number A of u and d quarks of the nucleus into strange quarks.
The probability for such a process is proportional to G2A

F , with GF the Fermi
constant, and assuming a number A of simultaneous weak processes. Thus, for
a large enough baryon number (A > Amin ∼ 5), this probability is extremely
low, and the mean life time for an atomic nucleus to decay to a strangelet is
much higher than the age of the Universe. In addition, finite size effects (surface
and shell effects) place a lower limit (Amin ∼ 10–103, depending on the assumed
model parameters) on the baryon number of a stable strangelet even if bulk
SQM is stable [10,11,12]. On the other hand, a step by step production of s
quarks, at different times, will produce hyperons in the nucleus, i.e. a system
(hypernucleus) with a higher energy per baryon with respect to the original
nucleus. Thus, according to the strange matter hypothesis, the ordinary state of
matter, in which quarks are confined within hadrons, is a metastable state.

The success of traditional nuclear physics, in explaining an astonishing
amount of experimental data, provides a clear indication that quarks in a nu-
cleus are confined within protons and neutrons. Thus, the energy per baryon for
a droplet of u,d quark matter (nonstrange quark matter) must be higher than
the energy per baryon of a nucleus with the same baryon number.

These stability conditions in turn may be used to constrain the parameters
entering in models for the equation of state (EOS) of SQM [10]. Our present
understanding of the properties of ultra-dense hadronic matter, does not allow
us to exclude or to accept a priory the validity of the strange matter hypothesis.
Thus strange stars may exist in the Universe.

In the present chapter, we will not consider the so called hybrid stars, i.e.
neutron stars with a quark matter core, or with a region where a mixed phase
of hadronic and quark matter is present. These hybrid stars are thoroughly
discussed in the chapters by D. Blaschke et al. [13] and by N. Glendenning and
F. Weber [14] in the present volume.

Also, in this work, we will consider only bare strange stars, i.e. we neglect
the possible presence of a crust of normal (confined) matter above the deconfined
quark matter core [15]. For stars with M ∼ 1 M�, the thickness of this crust is
on the order of 10–100 m, therefore the presence of a crust will not affect the
considerations on the radius of strange star candidates we will make in section
5. However, this crust might be relevant to model glitches in strange stars [16],
and it represents the largest part of the stellar radius in the case of the so called
strange dwarfs [17].

Strange stars are the natural site for a color superconducting state of quark
matter (see the chapter by Alford, Bowers and Rajagopal [18] in the present
volume, and ref. [19] for a detailed introduction to this subject). Particularly,
there could be a region inside a strange star where quark matter is in a crys-
talline (“LOFF”[20]) superconducting phase [18,19]. This raises the possibility
to successfully model pulsar glitches with strange stars [18,19].
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To close this section, we want to give a simple argument to explain why
charmed (c), bottom (b), and top (t) quark flavors are not expected in neutron
star cores or in quark stars. The reason is that c, b, t quarks are much more
massive than u, d, s quarks. Suppose for the moment u, d, s quarks to be massless
and non–interacting, and consider u,d,s quark matter (SQM) in equilibrium with
respect to weak interactions. Under these hypotheses the number densities for
the three quark flavor species are equal, i.e. nB = nu = nd = ns (see discussion
below). Then the creation of the lightest massive quark, e.g. through the weak
process s → c + e− + ν̄e, requires the Fermi energy of these massless quarks
should be at least equal to the rest mass of charmed quark:

EFq = �c kFq = �c
(
3π2nq

)1/3
= �c

(
3π2nB

)1/3
≥ mc = 1.3 GeV (1)

which implies nB ≥ 9.7 fm−3, i.e a baryon number density at least equal to
about 60 times the normal saturation density of nuclear matter, far above the
central density expected for neutron stars or strange stars.

2 The equation of state for strange quark matter

From a basic point of view the equation of state for SQM should be calculated
solving the equations of Quantum Chromo-Dynamics (QCD) at finite density.
As we know, such a fundamental approach is presently not doable [21], and the
usual way to circumvent this difficulty is to make use of simple phenomenological
models, which incorporate from the beginning some of the fundamental charac-
teristic of QCD. Here, we discuss two phenomenological models for the EOS of
strange quark matter. One is a model [22,23,10] which is related to the MIT bag
model [24] for hadrons. The other is a recent model proposed by Dey et al. [25].

The concentrations of different quark flavors and leptons in SQM is deter-
mined by the requirement of electric charge neutrality

2
3
nu −

1
3
nd −

1
3
ns − ne = 0 (2)

and equilibrium with respect to the weak processes:

u + e− → d + νe (3)

u + e− → s + νe (4)

d→ u + e− + ν̄e (5)

s→ u + e− + ν̄e (6)

s + u→ d + u. (7)

The latter equilibrium conditions can be written in terms of the corresponding
chemical potentials μi,

μd = μs ≡ μ (8)
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μ = μu + μe, (9)

with μνe
= μν̄e

= 0 (neutrino–free matter). Charge neutral matter in equilibrium
with respect to the weak interactions will be referred to as β–stable matter.

In the case of massless free quarks, the charge neutrality and β–equilibrium
conditions imply:

nu = nd = ns , ne = 0 , (10)

i.e. for massless free quarks, β–stable SQM is composed by an equal number of
u, d, s quarks with no electrons. As a consequence of this property of bulk SQM,
strangelets are expected to have a very low charge to mass ratio Z/A (Ze being
the net electric charge). This is in general true also in the more realistic case of
finite mass and interacting quarks [10]. Strangelets, having Z/A 	 1, are not
destabilized by Coulomb effects. Thus they can grow in baryon number (and in
size) and form ultra-dense objects of macroscopic size. The property of low Z/A
provides the basis for current experimental searches for strangelets in heavy ion
collisions. For heavy “ordinary” nuclei, to a large extend the balance between
the nuclear symmetry energy and the Coulomb energy, makes Z/A ∼ 0.4. Thus
the strong Coulomb repulsion makes very heavy nuclear systems unstable with
respect to fission. This sets the upper limit (Amax ∼ 240) on the baryon number
of stable atomic nuclei.

All the thermodynamical properties of SQM can be deduced from the Gibbs
grand canonical potential. The grand canonical potential per unit volume can
be written

Ω = Ω(0) + Ωint (11)

where Ω(0) is the contribution of a non–interacting u,d,s Fermi gas, and Ωint is
the contribution coming from the interaction among quarks.

We write the grand potential density Ωint as a sum of two pieces, which
characterize the two different regimes of strong interactions:

Ωint � Ωshort + Ωlong (12)

The short range contribution Ωshort can be calculated using perturbative QCD.
The long range contribution Ωlong, is very hard to evaluate because of the dif-
ficulties involved in solving nonperturbative QCD. A very promising approach
to deal with the nonperturbative regime of strong interactions is to solve QCD
equations on a discrete lattice of space–time [26,27,21]. In the first model for
SQM, we consider in this work, Ωlong is approximated by a phenomenological
term,

Ωlong � B, (13)

which represents the difference between the energy density of “perturbative vac-
uum” and true QCD vacuum. The parameter B accounts in a crude phenomeno-
logical way of nonperturbative aspects of QCD. B is related to the “bag con-
stant” which in the MIT bag model for hadrons gives the confinement of quarks
within the hadronic bag. This is a rough approximation, which is expected to be
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reasonable at very high density, but which is not appropriate in the density re-
gion where quarks clusterize to form hadrons, i.e. in the region where the phase
transition between hadronic and quark matter takes place.

In the following we assume massless u and d quarks and finite mass s quarks:

mu = md = 0, ms �= 0. (14)

The free Fermi gas contribution to Ω, at zero temperature, is:

Ω(0) = Ω(0)
u + Ω

(0)
d + Ω(0)

s (15)

Ω(0)
q = − 1

(�c)3
1

4π2μq
4, (q = u, d) (16)

Ω(0)
s = − 1

(�c)3
1

4π2

{
μsμ

∗
s

(
μ2

s −
5
2
m2

s

)
+

3
2
m4

s ln
(μs + μ∗

s

ms

)}
(17)

where μu, μd, μs are the quark chemical potentials, and

μ∗
s ≡

(
μ2

s −m2
s

)1/2
= �c kFs (18)

The perturbative expansion of Ωshort up to linear terms in the QCD struc-
ture constant αc gives [22,23,10]

Ωshort � Ω(1) = Ω(1)
u + Ω

(1)
d + Ω(1)

s , (19)

Ω(1)
q =

1
(�c)3

1
4π2

2αc

π
μq

4, (q = u, d) (20)

Ω(1)
s =

1
(�c)3

1
4π2

2αc

π

{
3
[
μsμ

∗
s −m2

s ln
(μs + μ∗

s

ms

)]2
− 2μ∗

s
4

− 3m4
s ln2

(ms

μs

)
+ 6 ln

(ρren

μs

)[
μsμ

∗
sm

2
s −m4

s ln
(μs + μ∗

s

ms

)]}
(21)

where ρren is the so called renormalization point (see ref. [10]). In the case of
massless u and d quarks a standard choice [10] is ρren = 313 MeV.

To summarize, the equation of state of SQM (at zero temperature) in the
approximation for the grand potential density we are considering is:

P (μu, μd, μs) = −Ω � −Ω(0) −Ω(1) −B (22)

ρ(μu, μd, μs) �
1
c2

{
Ω(0) + Ω(1) +

∑
f=u,d,s

μfnf + B

}
(23)



258 I. Bombaci

Table 1. Parameters for the MIT bag model equations of state , and corresponding
ground state properties of SQM. B (in MeV/fm3) is the bag constant, ms (MeV) the
strange quark mass, and αc the QCD structure constant. (E/A)gs (in MeV) is the
energy per baryon, ρgs (×1014 g/cm3) the mass density, and ngs (fm−3), give the
properties of SQM at the point where the pressure is equal to zero.

EOS B ms αc (E/A)gs ρgs ngs

B600 60 0 0.00 837 4.28 0.287

B60200 60 200 0.00 908 4.78 0.295

B900 90 0 0.00 926 6.42 0.388

Table 2. Ground state properties of SQM within the model by Dey et al. [25]. The
two equations of state SS1 and SS2 differ for the choice of the parameter ν entering in
the expression of the in-medium quark masses. The value of the current quark masses
are: mu = 4 MeV, md = 7 MeV, and ms = 150 MeV. The ground state properties are
given in the same units as in the previous table.

EOS ν (E/A)gs ρgs ngs

SS1 0.333 888 12.3 0.779

SS2 0.286 926 14.1 0.858

The number densities for each flavor can be calculated using the thermody-
namical relation:

nf = −
(
∂Ωf

∂μf

)
TV

, (f = u, d, s) (24)

and the total baryon number density is

nB =
1
3
(nu + nd + ns). (25)

In the particular case of massless quarks, with gluon exchange interactions
to the first order in the QCD structure constant αc, the EOS of β–stable SQM
can be written in the following simple form:

ε = Kn
4/3
B + B, P =

1
3
Kn

4/3
B −B, K ≡ 9

4
π2/3

(
1 +

2αc

3π

)
�c (26)

where ε is the energy density. Eliminating the baryon number density nB one
gets:

P =
1
3
(ε− 4B) . (27)

Within this approximation, the density of zero pressure SQM is ρgs = 4B/c2,
which is the value of the surface density of a bare strange star.
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In summary, within this model for the equation of state of SQM, there are
three phenomenological parameters, namely: B, ms, and αc. It is possible to
determine ranges in the values of these parameters in which SQM is stable, and
nonstrange quark matter is not [10]. For example, in the case of non–interacting
quarks (αc = 0) one has B � 57–91 MeV/fm3 for ms = 0, and B � 57–
75 MeV/fm3 for ms = 150 MeV. Using a popular terminology, in the following,
we will refer to this model for the equation of state as the “MIT bag model EOS
for strange quark matter”.

The schematic model outlined above becomes less and less trustworthy going
from very high density region (asymptotic freedom regime) to lower densities,
where confinement (hadrons formation) takes place. Recently, Dey et al. [25]
derived a new equation of state for SQM using a “dynamical” density-dependent
approach to confinement. The EOS of ref. [25] has asymptotic freedom built in,
shows confinement at zero baryon density, deconfinement at high density. In this
model, the quark interaction is described by a colour-Debye-screened inter-quark
vector potential originating from gluon exchange, and by a density-dependent
scalar potential which restores chiral symmetry at high density (in the limit of
massless quarks). The density-dependent scalar potential arises from the density
dependence of the in-medium effective quark masses Mq, which, in this model,
are taken to depend upon the baryon number density according to

Mq = mq + 310 · sech
(
ν
nB

n0

)
(MeV), (28)

where n0 = 0.16 fm−3 is the normal nuclear matter density, q(= u, d, s) is the
flavor index, and ν is a parameter. The effective quark mass Mq(nB) goes from its
constituent masses at zero density, to its current mass mq as nB goes to infinity.
Here we consider two different parameterizations of the EOS of ref. [25], which
correspond to a different choice for the parameter ν. The equation of state SS1
(SS2) corresponds to ν = 0.333 (ν = 0.286). These two models for the EOS give
absolutely stable SQM according to the strange matter hypothesis (see Tab. 2).

Medium dependent mechanisms for confinement and their consequences for
the EOS of quark matter, have been explored by many authors using different
QCD motivated phenomenological models. Here, due to the lack of space, we
can not discuss all these different attempts, and we refer the interested reader
to the original literature [28,29,30,31,32,33,34,35,36,37].

3 Structural properties of strange quark stars

The structural properties of non-rotating strange stars are obtained by integrat-
ing the Tolman–Oppenheimer–Volkoff (TOV) equations [38,39],

dP (r)
dr

= −Gm(r)ρ(r)
r2

{[
1 +

P (r)
c2ρ(r)

][
1 +

4πr3P (r)
c2m(r)

][
1− 2Gm(r)

c2r

]−1
}

(29)

dm(r)
dr

= 4πr2ρ(r) (30)
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where G is the universal constant of gravitation, c the speed of light, m(r) is the
gravitational mass enclosed within a “radius” r [determined by (proper surface
area) = 4πr2)]. The pressure P (r) and the mass density ρ(r) specify the equation
of state. The TOV equations can be integrated numerically, with the following
boundary conditions:

m(0) = 0, P (R) = Psurf . (31)

The first condition means that the density and the pressure are finite at the
center of the star. The second boundary condition is the definition of the surface
of the star, which specifies the radius R of the compact star through the surface
area 4πR2. In the case of a bare strange star Psurf = 0.

The total mass

M ≡MG = m(R) =
∫ R

0
4πr2ρ(r)dr (32)

is the gravitational mass of the compact star measured by a distant observer in
keplerian orbit around the star. The volume of a spherical layer of the star in
the Schwarzschild metric (proper volume) is

dV = 4π eλ(r)/2 r2dr = 4π
[
1− 2Gm(r)

c2r

]−1/2
r2dr . (33)

Table 3. Properties of the maximum mass configuration obtained from different equa-
tions of state of Strange Quark Matter. MG is the gravitational (maximum) mass in
unit of the solar mass M�, R is the corresponding radius, ρc the central density, nc the
central number density (n0 = 0.16 fm−3), Pc the central pressure, MB the baryonic
mass.

EOS MG/M� R(km) ρc(g/cm3) nc/n0 Pc(dyne/cm2) MB/M�

B600 1.964 10.71 2.06 × 1015 6.94 0.49 × 1036 2.625

B60200 1.751 9.83 2.44 × 1015 7.63 0.54 × 1036 2.141

B900 1.603 8.75 3.09 × 1015 9.41 0.73 × 1036 1.937

SS1 1.438 7.09 4.65 × 1015 14.49 1.40 × 1036 1.880

SS2 1.324 6.53 5.60 × 1015 16.34 1.64 × 1036 1.658

The total number of baryons NB in the star is given by

NB =
∫

n dV =
∫ R

0
4πr2nB(r)

[
1− 2Gm(r)

c2r

]−1/2
dr , (34)

and the baryonic mass (or rest mass) of the star is

MB = muNB , (35)
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Fig. 1. Gravitational mass versus radius (left panel), and versus central number density
(right panel), for MIT bag model strange stars. Stable equilibrium configurations are
those on the positive slope branch of the MG(nc) curve.

where mu is an average baryonic mass unit. MB is the rest mass of NB baryons
dispersed at infinity, which form the compact star. Clearly, due to color confine-
ment, in the case of a strange star, we can not have the dispersion at infinity
of isolated quarks, but only of baryons. The so called proper mass of the star is
given by

MP =
∫

ρ dV =
∫ R

0
4πr2ρ(r)

[
1− 2Gm(r)

c2r

]−1/2
dr . (36)

MP is equal to the sum of the mass elements on the whole volume of the star,
it includes the contributions of rest mass and internal energy (kinetic and inter-
actions (other than gravitation)) of the constituents of the star. This particular
role of the gravitational interaction which does not enter in the expression of
the energy density (EOS), and which contribute to the gravitational mass (total
energy) of the star through the general relativistic field equations is due to the
long–range nature of the gravitational interaction. Since eλ(r)/2 ≥ 1, it follows
that MP ≥MG.

The difference

EG = (MG −MP )c2 = c2
∫ R

0
4πr2drρ(r)

[
1− eλ(r)/2

]
≤ 0 (37)

is the gravitational energy of the star. Its opposite BEG = −EG is called the
gravitational binding energy. It is the gravitational energy released moving the
infinitesimal mass elements ρdV from infinity to form the star. In the Newtonian



262 I. Bombaci

Fig. 2. Left panel: gravitational, baryonic, and proper masses of strange stars versus
the central number density. Right panel: total (BE), gravitational (BEG), and internal
(BEI) binding energies versus the central number density. Results are relative to the
bag model EOS with massless non–interacting quarks (αc = 0).

limit, from eq.(37), one recovers the well known relation for the (Newtonian)
gravitational energy

ENewt
G = −G

∫ R

0
4πr2dr

m(r)ρ(r)
r

. (38)

The internal energy of the star is

EI = (MP −MB)c2 =
∫ R

0
ε′(r)dV , (39)

where ε′(r) is the internal energy density, i.e. the total energy density apart from
the rest-mass energy density. The internal binding energy is thus BEI = −EI .

The total binding energy is given by

BE = BEG + BEI = (MB −MG)c2, (40)

it is the total energy released during the formation of a static compact star con-
figuration from a rarefied gas of NB baryons. The stability of a such configuration
requires BE > 0.

Therefore, the gravitational mass of the compact star, represents the total
energy (E = MGc

2) of the star, including both the rest mass energy MBc2 of its
constituents dispersed at infinity, and the mass–energy contribution coming from



Strange Quark Stars 263

Fig. 3. Same as in figure 2, but for ms = 200 MeV.

the microscopic motion and the interactions (including gravitation) between the
star’s constituents:

MG = MB +
1
c2

EI +
1
c2

EG = MP +
1
c2

EG (41)

Since the work of Haensel et al. [40] and Alcock et al. [15], non-rotating
strange star configurations have been calculated by many authors. In Fig. 1,
we show the calculated gravitational mass of strange stars as a function of the
radius (left panel) and as a function of the central number density (right panel)
using the MIT bag model EOS. Stable equilibrium configurations are those on
the positive slope branch of the MG(nc) curve. The higher curve is the result
for massless non–interacting gas (ms = 0, αc = 0) and B = 60 MeV/fm3. To
illustrate how these properties depend on the value of the strange quark mass
and on the QCD structure constant, we report, in the same figure, the results
obtained for ms = 200 MeV, αc = 0.17. The overall effect of finite ms and αc is
to reduce the maximum mass and the radius of the strange star. The properties
of the maximum mass configuration, using different EOSs, are summarized in
Tab. 3. The larger value of the maximum mass for the SS1 model, with respect
to the SS2 model, can be traced back to role of the parameter ν in eq. (28) for
the effective quark mass Mq. In fact, a larger value of ν (SS1 model) gives a
faster decrease of Mq with density, producing a stiffer EOS.
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Fig. 4. Masses (left panel) and binding energies (right panel) of a neutron star versus
central density ρc assuming a generic EOS. Results are relative to the BPAL22 EOS.
Configurations on the decreasing branch of the function MG(ρc) are unstable.

A transparent analysis of the properties of strange stars can be made in the
case of the simple EOS

P =
1
3
(ρc2 − 4B) (42)

valid for massless quarks. There is a striking qualitative difference in the mass–
radius (MR) relation of strange stars with respect to that of neutron stars. For
strange stars with “small” (MG 	 Mmax) gravitational mass, MG is propor-
tional to R3 (see Fig. 1). In contrast, neutron stars have radii that decrease
with increasing mass (see Fig. 7). Another related consequence of an EOS of the
form (42) is that “low” mass strange stars are bound by the strong interaction,
contrary to the case of neutron stars which are bound by gravity. In fact, for
“low” values of the central density the internal binding energy of a strange star
is positive (see Figs 2 and 3, and compare with the corresponding Fig. 4 for the
neutron stars case).

As we know, there is a minimum mass for a neutron star (Mmin ∼ 0.1 M�).
In the case of a strange star, there is essentially no minimum mass. As ρc → ρsurf

(surface density), a strange star (or better a lump of SQM for very low baryon
number) is a self–bound system, until the baryon number becomes so low that
finite size effects destabilize it.

A strange star has a very sharp boundary. In fact, the density drops abruptly
from ρsurf ∼ 4 – 10 ×1014 g/cm3 to zero on a length scale typical of the strong
interaction, i.e. the thickness of the “quark surface” is of the order of 10−13cm.
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This is of the same order of the thickness of the surface of an atomic nucleus. In
the case of the simple EOS (26) the surface density is:

ρsurf =
4B
c2

nsurf =
(

3B
K

)3/4

. (43)

4 Rapidly rotating strange stars

The possible existence of strange stars in binary stellar systems, implies that
these compact stars may possess rapid rotation rates (see ref. [41] and references
therein). Particularly, the two SS candidates in SAX J1808.4–3658 and 4U 1728–
34 are millisecond pulsars having spin periods P = 2.49 ms and P = 2.75 ms
respectively. This makes the incorporation of general relativistic effects of rota-
tion imperative for a satisfactory treatment of the problem.

General relativity predicts the existence of a limiting stable circular orbit
for the motion of a test particle around a compact star. This orbit is called
the innermost stable circular orbit (ISCO) or the marginally stable orbit. For
material particles within the radius of such orbit, no keplerian orbit is possible
and the particles will undergo free fall under gravity. For a non-rotating compact
star the radius (RISCO) of the ISCO is equal to three times the Schwartzschild
radius (Rs) of the compact star

RISCO = 3Rs =
6GM

c2
� 8.86

M

M�
km . (44)

RISCO can be calculated for equilibrium sequences of rapidly rotating strange
stars in a general relativistic space–time in the same way as for neutron stars
[42].

Most of the calculations on the rotational properties of SS, reported so far,
have relied on the slow rotation approximation [43,16]. This approximation loses
its validity as the star’s spin frequency approaches the mass shedding limit.
Rapidly rotating SS sequences have been recently computed by the authors of
ref. [44,45,46]. However, all the calculations mentioned above make use of the
equation of state for SQM related to the MIT bag model for hadrons. Within
this EOS model, as we will show in the following pages, the calculated strange
star radii are seen to be incompatible with the mass–radius relation [47] for
SAX J1808.4–3658, and only marginally compatible (see Fig. 8) with that for
4U 1728–34 (ref.[48]). In this section, we present some recent calculations, re-
ported in ref. [49], for the equilibrium sequences of rapidly rotating SS in general
relativity using both the MIT bag model EOS, and the new EOS by Dey et al.
[25].

To calculate the structure of rapidly rotating SS, we use the methodology
described in detail in Datta et al. [42]. For completeness, we briefly describe the
method here. For a general axisymmetric and stationary space–time, assuming a
perfect fluid configuration, the Einstein field equations reduce to ordinary inte-
grals (using Green’s function approach). These integrals may be self consistently
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(numerically and iteratively) solved to yield the value of metric coefficients in
all space. Using these metric coefficients, one may then compute the structure
parameters, angular momentum and moment of inertia corresponding to initially
assumed central density and polar to equatorial radius ratio. These may then
be used (as described in ref.[50]) to calculate parameters connected with stable
circular orbits (like the ISCO and the keplerian angular velocities) around the
configuration in question.

The sequences that we present are: constant rest (baryonic) mass sequences,
constant angular velocity sequences, constant central density sequences and con-
stant angular momentum sequences. We also calculate the radius of the ISCO
and its dependence on the spin rate of the strange star, which will be relevant
for modeling X–ray burst sources involving strange stars.

The equilibrium sequences of rotating SS depend on two parameters: the
central density (ρc) and the rotation rate (Ω). For purpose of illustration, we
choose three limits in this parameter space. These are: (i) the static or non–
rotating limit, (ii) the limit at which instability to quasi–radial mode sets in and
(iii) the centrifugal mass shed limit. The last limit corresponds to the maximum
Ω for which centrifugal forces are able to balance the inward gravitational force.

The result of the calculations of ref. [49] for the EOS SS1 is displayed in Fig.
5. In panel (a) of this figure, we show the functional dependence of the gravita-
tional mass with ρc. In these set of figures, the bold solid curve represents the
non–rotating or static limit, and the dotted curve the centrifugal mass shed limit.
The thin solid curves are the constant baryonic mass evolutionary sequences. The
evolutionary sequences above the maximum stable non–rotating mass configura-
tion are the supramassive evolutionary sequences, and those that lie below this

Fig. 5. Structure parameters for rotating strange stars corresponding to EOS SS1. The
bold-solid line represents the non–rotating limit, the dotted line the mass–shed limit
and the almost vertical dot–dashed line is the instability limit to quasi–radial mode
perturbations. The thin solid lines (labelled 1, 2 ...) represent constant baryonic mass
sequences: 1: 1.59 M�, 2: 1.66 M�, 3: 1.88 M�, 4: 2.14 M�, 5: 2.41 M�.
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limit are the normal evolutionary sequences. The maximum mass sequence for
this EOS corresponds to MB = 2.2 M�. The dot–dashed line (slanted towards
left) represents instability to quasi–radial perturbations. In the central panel of
the same figure, we give a plot of M as a function of the equatorial radius R. For
the millisecond pulsar PSR 1937 +21 with an assumed mass value of 1.4 M�,
this corresponds to a radius of 7.3 km.

In panel (c) of Fig. 5, we display the plot of Ω as a function of the specific
angular momentum j̃ = cJ/GM2

B (where J is the angular momentum of the
configuration). Unlike for neutron stars (e.g. [51,42]), the Ω–j̃ curve does not
show a turn–over to lower j̃ values for SS. This is due to the effect of the long–
range (non–perturbative) interaction in QCD, which is responsible for quark
confinement in hadrons, and makes low mass SS self–bound objects. Ω for the
mass shed limit appears to asymptotically tend to a non–zero value for rapidly
rotating low mass stars. A further ramification of this result is that the ratio of
the rotational energy to the total gravitational energy (T/W ) becomes greater
than 0.21 (as also reported in ref. [44]) thus probably making the configurations
susceptible to triaxial instabilities.

In Table 4 we display the values of the structure parameters for the max-
imum mass non–rotating strange star models. Table 5 and Table 6 display the
maximum mass rotating and maximum angular momentum models for the EOS
models under consideration. While for EOS SS1, the maximum mass rotating

Table 4. Structure parameters for the non–rotating maximum mass configurations.
Listed, are the central density (ρc) in units of g cm−3, the gravitational mass (M) in
solar units, the equatorial radius (R) in km, the baryonic mass (MB) in solar units,
the radius of the marginally stable orbit (RISCO) in km and the moment of inertia (I)
in units of 1045 g cm2.

EOS ρc M R MB RISCO I

SS1 4.65 × 1015 1.438 7.093 1.880 12.740 0.733

SS2 5.60 × 1015 1.324 6.533 1.658 11.730 0.576

B90 0 3.09 × 1015 1.603 8.745 1.937 14.202 1.146

Table 5. Structure parameters for the maximally rotating (Ω = Ωms) maximum mass
configuration. In addition to the quantities listed in the previous table, we display, the
rotation rate (Ω) in 104 rad s−1, the ratio of the rotational to the total gravitational
energy (T/W ) and the specific angular momentum (j̃ = cJ/GM2

B).

EOS ρc Ω I M T/W R j̃ RISCO MB

SS1 3.10 × 1015 1.613 2.072 2.077 0.219 10.404 0.524 11.656 2.694

SS2 3.60 × 1015 1.738 1.613 1.904 0.218 9.612 0.570 10.758 2.366

B90 0 1.90 × 1015 1.190 3.369 2.272 0.232 13.213 0.633 14.612 2.683
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Table 6. Structure parameters for the maximum angular momentum configuration.

EOS ρc Ω I M T/W R j̃ RISCO MB

SS1 3.10 × 1015 1.613 2.072 2.077 0.219 10.404 0.524 11.656 2.694

SS2 3.40 × 1015 1.719 1.633 1.899 0.220 9.693 0.575 10.837 2.355

B90 0 1.70 × 1015 1.161 3.456 2.254 0.239 13.447 0.650 14.864 2.650

Table 7. Structure parameters for the constant angular velocity sequence for EOS SS1.
This sequence corresponds to the rotation rate of the pulsar PSR 1937 +21, having
Ω = 4.03 × 103 rad s−1 or period P = 1.556 ms.

ρc I M T/W R j̃ RISCO MB

1.70 × 1015 0.353 0.852 0.013 6.663 0.153 6.663 1.027

1.80 × 1015 0.433 0.963 0.012 6.884 0.143 7.664 1.178

1.90 × 1015 0.502 1.052 0.019 7.036 0.136 8.378 1.301

2.40 × 1015 0.701 1.297 0.010 7.326 0.116 10.355 1.660

2.60 × 1015 0.737 1.346 0.010 7.344 0.112 10.741 1.735

4.60 × 1015 0.769 1.458 0.008 7.139 0.096 11.732 1.914

5.65 × 1015 0.734 1.449 0.007 7.007 0.093 11.703 1.899

model and the maximum angular momentum models are the same, for EOS
SS2, the two models are slightly different, with the maximum angular momen-
tum model coming earlier (with respect to ρc) than the maximum mass rotating
configuration.

In Table 7 we list the values of the various parameters for the constant
Ω sequences for EOS SS1. The first entry in this table corresponds to ρc for
which RISCO = R. For higher values of ρc, RISCO > R; for large values of ρc,
the boundary layer (separation between the surface of the SS and its innermost
stable orbit) can be substantial (∼ 5 km for the maximum value of the listed
ρc).

5 Strange star candidates

To distinguish whether a compact star is a neutron star or a strange star, one
has to find a clear observational signature. As we saw in section 3, the most
striking qualitative difference between neutron stars and strange stars is in their
mass–radius (MR) relation. In the following we report about recent studies where
it has been claimed that some compact objects associated with discrete X-ray
sources are possibly strange stars.
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5.1 4U 1820–30

We begin with the X-ray burst source 4U 1820–30. X-ray bursts are sudden
emission of X-rays from discrete cosmic sources (referred to as X-ray bursters).
They were discovered [53] in 1975 by the ANS satellite in the globular cluster
NG6624. The bursts have very short rise times (≤ 1 s) and decay times in the
range 3–100 s. The recurrence interval between bursts is generally in the range
1 hour–1 day. The X-ray energy emitted in each burst is typically ∼ 1039 erg
and the peak burst luminosity ∼ 1038 erg/s. Most bursters are also sources of
persistent X-ray emission with average steady-state luminosity ∼ 1037 erg/s.
Bursts with the above features are known as Type-I X-ray bursts, to be distin-
guished from Type-II bursts [54], which have recurrence intervals between bursts
on time scales of seconds to minutes when the source is active. Presently only
two Type-II bursters are known: the source MXB 1730-335 (which is also known
as the Rapid Burster) and the source GRO 1744-28 (see ref. [55]). According
to the currently accepted models [56,57,58], Type-I X-ray bursts originate from
thermonuclear flashes in matter that accumulates on the surface of an accreting
compact object (usually assumed to be a neutron star) in a low-mass X-ray bi-
nary. The thermonuclear flashes model is able to account very successfully most
of the observed properties of the X-ray bursts.

The X-ray burst source 4U 1820–30 is located in the globular cluster NGC
6624, and its distance from earth is 6.4±0.6 kpc. Using the burst spectra collected
by EXOSAT [59], Haberl and Titarchuk [60] were able to extract a semiempirical
mass–radius relation for the underlying compact object. This MR relation is
shown in fig. 6 by the trapezium-like region labeled 4U 1820–30. In the same
figure, we show [61] the theoretical MR relation as calculated for “conventional”
neutron stars. Results in left panel of Fig. 6 are relative to phenomenological
models for the EOS. The dashed line refers to Skyrme SkM∗ nuclear interaction.
Continuous lines refer to the so called SL EOS, based on a generalized Skyrme
interaction (see ref. [62,63]). The three models SL12, SL22 and SL32 differ for
the value of the nuclear incompressibility K0, equal to 120, 180, and 240 MeV
respectively. In the right panel of Fig. 6, show the MR relation as calculated from
other models for asymmetric nuclear matter EOS. References to these models
are given in the figure caption. In general, for a fixed value of the neutron star
mass, a soft EOS is expected to give a smaller radius with respect to a stiff
EOS. Therefore, as a limiting case, we considered the SL12 and BPAL12 EOSs
[62,63], which give K0 = 120 MeV. The value 120 MeV for the incompressibility
is unrealistically small when compared with the value (180–240 MeV) extracted
from monopole nuclear oscillations [64,65] and nuclear systematic [66]. However,
SL12 and BPAL12 EOSs are still consistent with the measured neutron star
masses, which set a lower limit of about 1.44 M�, for the theoretical value of
the limiting mass of a neutron star. All neutron star models considered in Fig. 6
are excluded by the observational data from 4U 1820–30.
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Fig. 6. Theoretical mass–radius (MR) relations (curves) for “conventional” neutron
stars are compared with the semiempirical MR relation extracted in ref. [60] for the
X-ray burster 4U 1820–30 (closed region of the MR plane labeled 4U 1820–30). MR
curve PM3 has been obtained using the EOS of ref. [67], and the curve DBHF with the
EOS given in ref. [68]. The dashed horizontal line represents the gravitational mass of
the pulsar PSR1916+13.

5.2 SAX J1808.4–3658

The transient X-ray burst source SAX J1808.4–3658 was discovered in Septem-
ber 1996 by the BeppoSAX satellite. Two bright type-I X-ray bursts were de-
tected, each lasting less than 30 seconds. Analysis of the bursts in SAX J1808.4–
3658 indicates that it is 4 kpc distant and has a peak X-ray luminosity of
6× 1036 erg/s in its bright state, and a X-ray luminosity lower than 1035 erg/s
in quiescence [69]. The object is nearly certainly the same as the transient X-ray
source detected with the Proportional Counter Array on board the Rossi X-ray
Timing Explorer (RXTE). Coherent pulsations at a period of 2.49 milliseconds
were discovered [70]. The star’s surface dipolar magnetic moment was derived
to be less than 1026 G cm3 from detection of X-ray pulsations at a luminosity of
1036 erg/s [70], consistent with the weak fields expected for type-I X-ray bursters
and millisecond radio pulsars [41]. The binary nature of SAX J1808.4–3658 was
firmly established with the detection of a 2 hour orbital period [71] as well as
with the optical identification of the companion star. SAX J1808.4–3658 is the
first pulsar to show both coherent pulsations in its persistent emission and X-
ray bursts, and by far the fastest-rotating, lowest-field accretion-driven pulsar
known. It presents direct evidence for the evolutionary link between low-mass
X-ray binaries (LMXBs) and millisecond radio pulsars [41].
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A mass–radius relation for the compact star in SAX J1808.4–3658 has been
recently obtained by Li et al. [47] (see also ref. [72,73]) using the following two
requirements. (i) Detection of X-ray pulsations requires that the inner radius
R0 of the accretion disk should be larger than the stellar radius R. In other
words, the stellar magnetic field must be strong enough to disrupt the disk flow
above the stellar surface. (ii) The radius R0 must be less than the so called
co-rotation radius Rc, i.e. the stellar magnetic field must be weak enough that
accretion is not centrifugally inhibited: R0

<∼ Rc = [GMP 2/(4π2)]1/3. Here G is
the gravitation constant, M is the mass of the star, and P is the pulse period.
The inner disk radius R0 is generally evaluated in terms of the Alfvén radius
RA, at which the magnetic and material stresses balance [41]: R0 = ξRA =
ξ[B2R6/Ṁ(2GM)1/2]2/7, where B and Ṁ are respectively the surface magnetic
field and the mass accretion rate of the pulsar, and ξ is a parameter of order of
unity almost independent [74] of Ṁ . Since X-ray pulsations in SAX J1808.4–3658
were detected over a wide range of mass accretion rate (say, from Ṁmin to Ṁmax),
the two conditions (i) and (ii) give R <∼ R0(Ṁmax) < R0(Ṁmin) <∼ Rc. Next, the
authors of ref. [47] assume that the mass accretion rate Ṁ is proportional to the
X-ray flux F observed with RXTE. This is guaranteed by the fact that the X-ray
spectrum of SAX J1808.4–3658 was remarkably stable and there was only slight
increase in the pulse amplitude when the X-ray luminosity varied by a factor of
∼ 100 during the 1998 April/May outburst [75,76,73]. Therefore, Li et al. [47]

Fig. 7. Comparison of the MR relation of SAX J1808.4–3658 determined from RXTE
observations with theoretical models of neutron stars and of SS. The solid curves rep-
resents theoretical MR relations for neutron stars and strange stars.
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get the following upper limit of the stellar radius: R < (Fmin/Fmax)2/7Rc, or

R < 27.5
(
Fmin

Fmax

)2/7(
P

2.49 ms

)2/3(
M

M�

)1/3

km, (45)

where Fmax and Fmin denote the X-ray fluxes measured during X-ray high- and
low-state, respectively, M� is the solar mass. Note that in writing inequality (45)
it is assumed that the pulsar’s magnetic field is basically dipolar. Arguments to
support this hypothesis are given in ref. [47], whereas a study of the influence on
the MR relation for SAX J1808.4–3658 of a quadrupole magnetic moment, and
of a non-standard disk–magnetosphere interaction model is reported in ref. [73].

Given the range of X-ray flux at which coherent pulsations were detected,
inequality (45) defines a limiting curve in the MR plane for SAX J1808.4–3658, as
plotted in the dashed curve in Fig. 7. The authors of ref.[47] adopted the flux ratio
Fmax/Fmin � 100 from the measured X-ray fluxes with the RXTE during the
1998 April/May outburst [76,73]. The dashed line R = Rs ≡ 2GM/c2 represents
the Schwartzschild radius - the lower limit of the stellar radius to prevent the
star collapsing into a black hole. Thus the allowed range of the mass and radius
of SAX J1808.4–3658 is the region confined by these two dashed curves in Fig. 7.

In the same figure, we report the theoretical MR relations (solid curves)
for neutron stars given by some recent realistic models for the EOS of dense
matter (see ref.[47] for references to the EOS models). Models BBB1 and BBB2
[95] are relative to “conventional” neutron stars (i.e. the core of the star is as-
sumed to be composed by an uncharged mixture of neutrons, protons, electrons
and muons in equilibrium with respect to the weak interaction). The curve la-
beled Hyp depicts the MR relation for a neutron star in which hyperons are
considered in addition to nucleons as hadronic constituents [63]. The MR curve
labeled K− is relative to neutron stars with a Bose-Einstein condensate of nega-
tive kaons in their cores [63]. It is clearly seen in Fig. 7 that none of the neutron
star MR curves is consistent with SAX J1808.4–3658. Including rotational ef-
fects will shift the MR curves to up-right in Fig. 1 [42], and does not help
improve the consistency between the theoretical neutron star models and ob-
servations of SAX J1808.4–3658. Therefore SAX J1808.4–3658 is not well de-
scribed by a neutron star model. The curve B90 in Fig. 7 gives the MR relation
for SS described by the MIT bag model EOS with B = 90 MeV/fm3. The two
curves SS1 and SS2 give the MR relation for SS calculated with the two pa-
rameterizations for the EOS of Dey et al.[25]. Rotation at P = 2.49 ms (i.e.
Ω = 2.523 × 103rad/s 	 Ωms) has negligible effects on the radius of strange
stars [49] (see also Tab. 7). Clearly a strange star model is more compatible with
SAX J1808.4–3658 than a neutron star one.

5.3 4U 1728–34

Recently, Li et al. [48] investigated possible signatures for the existence of SS in
connection with the newly discovered phenomenon of kilohertz quasi–periodic
oscillations (kHz QPOs) in the X-ray flux from LMXB (for a review see ref.[77]).
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Initially, kHz QPO data from various sources were interpreted assuming a simple
beat–frequency model (see e.g. ref.[78]). In many cases, two simultaneous kHz
QPO peaks (“twin peaks”) are observed. The QPO frequencies vary and are
strongly correlated with source flux. In the beat–frequency model the highest
observed QPO frequency νu is interpreted as the keplerian orbital frequency νK

at the inner edge of the accretion disk. The frequency νl of the lower QPO peak
is instead interpreted as the beat frequency between νK and the neutron star
spin frequency ν0, which within this model is equal to the separation frequency
Δν ≡ νu−νl of the two peaks. Thus Δν is predicted to be constant. Nevertheless,
novel observations for different kHz QPO sources have challenged this simple
beat–frequency model. The most striking case is the source 4U 1728–34, where it
was found that Δν decreases significantly, from 349.3±1.7 Hz to 278.7±11.6 Hz,
as the frequency of the lower kHz QPO increases [79]. Furthermore, in the spectra
observed by the RXTE for 4U 1728–34, Ford and van der Klis [80] found low-
frequency Lorentian oscillations with frequencies between 10 and 50 Hz. These
frequencies as well as the break frequency (νbreak) of the power spectrum density
for the same source were shown [80] to be correlated with νu and νl.

A different model was recently developed by Titarchuk and Osherovich [81]
who proposed a unified classification of kHz QPOs and the related observed
low frequency phenomena. In this model, kHz QPOs are modeled as keplerian
oscillations under the influence of the Coriolis force in a rotating frame of ref-
erence (magnetosphere). The frequency νl of the lower kHz QPO peak is the

Fig. 8. Comparison of the MR relation of 4U 1728–34 determined from RXTE ob-
servations with theoretical models of neutron stars and of strange stars. The range of
mass and radius of 4U 1728–34 is allowed in the region outlined by the dashed curve
R = R0, the horizontal dashed line, and the dashed line R = Rs.
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keplerian frequency at the outer edge of a viscous transition layer between the
keplerian disk and the surface of the compact star. The frequency νu is a hybrid
frequency related to the rotational frequency νm of the star’s magnetosphere
by: ν2

u = ν2
K + (2νm)2. The observed low Lorentzian frequency in 4U 1728–34 is

suggested to be associated with radial oscillations in the viscous transition layer
of the disk, whereas the observed break frequency is determined by the charac-
teristic diffusion time of the inward motion of the matter in the accretion flow
[81]. Predictions of this model regarding relations between the QPO frequencies
mentioned above compare favorably with recent observations for 4U 1728–34,
Sco X-1, 4U 1608–52, and 4U 1702–429.

The presence of the break frequency and the correlated Lorentzian frequency
suggests the introduction of a new scale in the phenomenon. One attractive
feature of the model of ref.[81] is the introduction of such a scale in the model
through the Reynolds number for the accretion flow. The best fit for the observed
data was obtained by Titarchuk and Osherovich [81] when

ak = (M/M�)(R0/3Rs)3/2(ν0/364 Hz) = 1.03, (46)

where M is the stellar mass, R0 is the inner edge of the accretion disk, Rs is the
Schwarzschild radius, and ν0 is the spin frequency of the star. Given the 364 Hz
spin frequency [82] of 4U 1728–34, the inner disk radius can be derived from the
previous equation. Since the innermost radius of the disk must be larger than
the radius R of the star itself, this leads to a mass-dependent upper bound on
the stellar radius (plotted by the dashed curve in Fig. 8)

R ≤ R0 � 8.86 a
2/3
k (M/M�)1/3 km. (47)

A second constraint on the mass and radius of 4U 1728–34 results from the
requirement that the inner radius R0 of the disk must be larger than the radius
of innermost stable circular orbit RISCO around the star. To make our discussion
more transparent, neglect for a moment the rotation of the compact star. For a
non-rotating star RISCO = 3Rs, then the second condition gives:

R0 ≥ 3Rs = 8.86
(
M/M�

)
km. (48)

Therefore, the allowed range of the mass and radius for 4U 1728–34 is the region
in the lower left corner of the MR plane confined by the dashed curve (R = R0),
by the horizontal dashed line, and by the Schwartzschild radius (dashed line
R = Rs). In the same figure, we compare with the theoretical MR relations for
non-rotating neutron stars and strange stars, for the same models for the EOS
considered in Fig. 7. It is clear that a strange star model is more compatible with
4U 1728–34 than a neutron star one. Including the effect of rotation (ν0 =364 Hz)
in the calculation of RISCO and in the theoretical MR relations, does not change
the previous conclusion [48,49]. These results strongly suggest that the compact
star in 4U 1728–34 might be a strange star.
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6 Conversion of neutron stars to strange stars
as the central engine of gamma-ray bursts

There is now compelling evidence to suggest that a substantial fraction of all
gamma-ray bursts (GRBs) occur at cosmological distances (red shift z ∼ 1− 3).
In particular, the measured red shift z = 3.42 for GRB 971214 (ref. [83]), and
z ∼ 1.6 for GRB 990123 (ref. [84]) implies an energy release of 3× 1053 erg and
3.4×1054 erg respectively, in the γ-rays alone, assuming isotropic emission. The
latter energy estimate could be substantially reduced if the energy emission is
not isotropic, but displays a jet-like geometry [85,84]. Models in which the burst
is produced by a narrow jet are able to explain the complex temporal structure
observed in many GRBs [86]. In any case, a cosmological origin of GRBs leads
to the conclusion of a huge energy output. Depending on the degree of burst
beaming and on the efficiency of γ-ray production, the central engine powering
these extraordinary events should be capable of releasing a total energy of a few
1053 erg.

Many cosmological models for GRBs have been proposed. Among the most
popular is the merging of two neutron stars (or a neutron star and a black hole)
in a binary system [87]. Recent results [88] within this model, indicate that,
even under the most favorable conditions, the energy provided by νν̄ annihila-
tion during the merger is too small by at least an order of magnitude, and more
probably two or three orders of magnitude, to power typical GRBs at cosmolog-
ical distances. An alternative model is the so–called “failed supernova” [89], or
“hypernova” model [87].

In the following, we consider the conversion of a neutron star (NS) to a
strange star (hereafter NS→SS conversion) as a possible central engine for GRBs.
In particular, we focus on the energetics of the NS→SS conversion, and not on
the mechanism by which γ-rays are produced. Previous estimate of the total
energy Econv released in the NS→SS conversion [90,91] or in the conversion of
a neutron star to hybrid star [92] gave Econv ∼ 1052 erg, too low to power
GRBs at cosmological distances. These calculations did not include the various
details of the neutron star and strange star structural properties, which go into
the binding energy release considerations. Here we report recent accurate and
systematic calculations [93] of the total energy released in the NS→SS conversion
using different models for the equation of state of neutron star matter (NSM)
and strange quark matter. As shown by the authors of ref. [93], the total amount
of energy liberated in the conversion is in the range Econv =(1—4)×1053 erg,
in agreement with the energy required to power gamma-ray burst sources at
cosmological distances.

Originally, the idea that GRBs could be powered by the conversion of a
neutron star to a strange star was proposed by Alcock et al. [15] (see also ref.
[90]), and recently reconsidered by other authors [91]. A similar model has been
discussed by Ma and Xie [92] for the conversion of a neutron star to a hybrid
star.

A number of different mechanisms have been proposed for the NS→SS con-
version. All of them are based on the formation of a “seed” of SQM inside the
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neutron star. For example: (i) a seed of SQM enters in a NS and converts it to a
SS [90]. These seeds of SQM, according to Witten [9], are relics of the primordial
quark–hadron phase transition microseconds after the Big Bang. (ii) A seed of
SQM forms in the core of a neutron star as a result of a phase transition from
neutron star matter to deconfined strange quark matter (NSM→SQM phase
transition). This could possibly happen when a neutron star is a member of a
binary stellar system. The NS accretes matter from the companion star. The
central density of the NS increases and it may overcome the critical density for
the NSM→SQM phase transition. The NS is then converted to a SS. In the case
of accretion induced conversion in a binary stellar system, the conversion rate
has been estimated [91] to be in the range (3–30)×10−10 conversions per day
per galaxy. This rate is consistent with the observed GRBs rate.

However, once there is a seed of SQM inside a neutron star, it is possible to
calculate the rate of growth [90,94]. The SQM front absorbs neutrons, protons,
and hyperons (if present), liberating their constituent quarks. Weak equilibrium
is then re-established by the weak interactions. As shown by Horvath and Ben-
venuto [94], the conversion of the whole star will then occur in a very short
time (detonation mode), in the range 1 ms – 1 s, which is in agreement with
the typical observed duration of GRBs. A detailed simulation of the conversion
process is still lacking, and only rough estimates of the total energy liberated in
the conversion have been made.

As we show below, following ref.[93], the dominant contribution to Econv

arises from the internal energy released in the conversion, i.e. in the NSM→SQM
phase transition. Moreover, the gravitational mass of the star will change during
the conversion process, even under the assumption that the total number of
baryons in the star is conserved.

The total energy released in the NS→SS conversion is given by the difference
between the total binding energy of the strange star BE(SS) and the total binding
energy of the neutron star BE(NS)

Econv = BE(SS)−BE(NS). (49)

Here we assume that the baryonic mass MB of the compact object is conserved in
the conversion process, i.e. MB(SS) = MB(NS) ≡MB . Then Econv is given in
terms of the difference between the gravitational mass of the NS and SS: Econv =
[MG(NS)−MG(SS)]c2.

In general the total binding energy for a compact object can be written
BE = BEI + BEG = (MB −MP )c2 + (MP −MG)c2, where BEI and BEG

denote the internal and gravitational binding energies respectively, and MP is
the proper mass of the compact object. The total conversion energy can then be
written as the sum of two contributions

Econv = Econv
I + Econv

G (50)

related to the internal and gravitational energy changes in the conversion. These
two contributions are given by:

Econv
I = BEI(SS)−BEI(NS) = [MP (NS)−MP (SS)]c2, (51)
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Econv
G = BEG(SS)−BEG(NS) = [MP (SS)−MG(SS)−MP (NS)+MG(NS)]c2,

(52)

and these can be evaluated solving the structural equations for non-rotating
compact objects. To highlight the dependence of Econv upon the present uncer-
tainties in the microphysics, the authors of ref. [93] employed different models
for the EOS of both NSM and SQM.

Recently, a microscopic EOS of dense stellar matter has been calculated
by Baldo et al. [95], and used to compute the structure of static [95] as well as
rapidly rotating neutron stars [42]. In this model for the EOS, the neutron star
core is composed of asymmetric nuclear matter in equilibrium, with respect to
the weak interactions, with electrons and muons (β-stable matter). In particular,
we consider their EOS based on the Argonne v14 nucleon-nucleon interaction
implemented by nuclear three-body forces (hereafter BBB1 EOS).

At the high densities expected in the core of a neutron star, additional
baryonic states besides the neutron and the proton may be present, including
the hyperons Λ, Σ, Ξ, Ω, and the isospin 3/2 nucleon resonance Δ. The equation
of state of this hyperonic matter is traditionally investigated in the framework of
Lagrangian field theory in the mean field approximation [96,97,63]. According to
this model, the onset for hyperon formation in β-stable–charged neutral dense
matter is about 2–3 times the normal nuclear matter density (n0 = 0.17 fm−3).
The latter result has been confirmed by recent microscopic calculations based on
the Brueckner-Hartree-Fock theory [98]. The appearance of hyperons, in general,
gives a softening of the EOS with respect to the pure nucleonic case. In the
present work we considered one of the EOS for hyperonic matter given in ref.
[63]. For strange quark matter, we consider the simple EOS based on the MIT
bag model for hadrons and the EOS by Dey et al. [25].

Table 8. Conversion to strange star of a neutron star with MG ∼ 1.4 M�, for different
EOSs for NSM and SQM. MB is the baryonic mass (which is conserved in the con-
version process), MG(NS) is the neutron star gravitational mass, and MG(SS) is the
gravitational mass of the corresponding strange star. All masses are in unit of the solar
mass M� = 1.989× 1033 g. Econv

G , Econv
I , and Econv are respectively the gravitational,

internal, and total conversion energy, in unit of 1053 erg.

NSM→SQM MB MG(NS) MG(SS) Econv
G Econv

I Econv

BBB1→ B600 1.574 1.409 1.254 -1.436 4.215 2.779

BBB1→ B60200 1.574 1.409 1.340 -0.677 1.920 1.243

BBB1→ B900 1.573 1.409 1.343 -0.057 1.241 1.184

BBB1→SS1 1.558 1.397 1.235 0.580 2.308 2.888

BBB1→SS2 1.566 1.403 1.268 1.604 0.800 2.404

Hyp→ B600 1.530 1.401 1.223 -0.617 3.802 3.185

Hyp→SS1 1.530 1.401 1.217 1.291 2.002 3.293
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Fig. 9. The total energy liberated in the conversion of a neutron star to a strange star
and the partial contributions from internal energy Econv

I (curves labeled “Int”) and
from gravitational energy Econv

G (curves labeled “Gra”) as a function of MB . See text
for details on the equations of state for neutron star matter and strange quark matter

To begin with, we fix as a “standard” EOS for neutron star matter the BBB1
EOS [95], to explore how the energy budget in the NS→SS conversion depends
on the details of the EOS for strange quark matter. First we consider the B600
equation of state. The NS→SS conversion based on this couple of EOSs, will
be referred to as the BBB1→ B600 conversion model. Similar notation will be
employed according to the EOS of NSM and SQM. The total conversion energy,
together with the partial contributions, is shown in the upper panel of Fig. 9.
As we can see, for MB larger than ∼ 1 M� (i.e. values of the baryonic mass
compatible with the measured neutron star gravitational masses) the total en-
ergy released in the NS→SS conversion is in the range (1–3)×1053 erg, one order
of magnitude larger than previous estimates [90,91,92]. Moreover, contrary to a
common expectation, the gravitational conversion energy Econv

G is negative for
this couple of EOSs. To make a more quantitative analysis, we consider a neutron
star with a baryonic mass MB = 1.574M� (see tab. 8), which has a gravitational
mass MG = 1.409M�, a radius R(NS) = 11.0 km, and a gravitational binding
energy BEG(NS) = 4.497 ×1053 erg. After conversion, the corresponding strange
star has MG = 1.254M�, R(SS) = 10.5 km, and BEG(SS) = 3.061 ×1053 erg.
The NS→SS conversion is energetically possible in this case, thanks to the large
amount of (internal) energy liberated in the NSM→SQM phase transition.



Strange Quark Stars 279

Similar qualitative results for the total conversion energy are obtained for
other choices of the two EOSs, but as we show below the magnitude of the
two partial contributions are strongly dependent on the underlying EOS for
NSM and SQM. The total conversion energy for the BBB1→ B60200 model is
plotted in the lower left panel of Fig. 9. Comparing with the previous case,
we notice that the strange quark mass produces a large modification of the
conversion energy, which is reduced by a factor between 2–3 with respect to the
case ms = 0. The bag constant B has also a sizeable influence on the conversion
energy. Increasing the value of B reduces Econv and strongly modifies Econv

G .
This can be seen comparing the results for the BBB1→ B600 conversion model
with those in the lower right panel of Fig. 1 for the BBB1→ B900 model. These
results are a consequence of the sizeable effects of the strange quark mass and
of the bag constant mainly on the internal binding energy BEI(SS) for strange
stars (compare for example the results depicted in figures 2 and 3). In fact, all
strange stars configurations within the B600 EOS are self–bound objects (i.e.
BEI(SS) > 0). Strange star configurations within the B900 (B60200) EOS are
self–bound objects up to MG ∼ 0.8 M� (MG ∼ 1.6 M�), to compare with
the corresponding maximum gravitational mass Mmax = 1.60 M� (Mmax =
1.75 M�).

The results depicted in the two upper panels of Fig. 10 have been obtained
using the EOS of ref. [25] for SQM, for two different choices of the parameter
ν. The parameter ν has a strong influence on the internal binding energy of the
strange star. In fact, we found that strange stars within the SS2 (SS1) EOS are
self–bound objects up to MG ∼ 0.7 M� (MG ∼ 1.4 M�), to compare with the
maximum gravitational mass Mmax = 1.33 M� (Mmax = 1.44 M�). This effect
is the main source for the differences in the calculated conversion energies for
the two conversion models BBB1→SS1 and BBB1→SS2.

The next step in our study is to consider a different neutron star matter
EOS, which allows for the presence of hyperons in the neutron star core. We
consider one of the EOS (hereafter Hyp) for hyperonic matter given in ref. [63]. In
the two lower panels of Fig. 10 we plot the total conversion energy, together with
the partial contributions, for the Hyp→ B600 and for the Hyp→SS1 conversion
models. These results are in qualitative agreement with those reported in the
previous figures.

In table 8, we report the conversion energy, together with the partial
contributions for the conversion of a neutron star with a gravitational mass
MG(NS) ∼ 1.4M� and for various conversion models.

7 Search for strangelets in cosmic rays
and in heavy ion collision experiments

Circumstantial evidence for strange stars could be supplied by the experimental
detection of stable or metastable strangelets.

Lumps of SQM might be present in cosmic radiation, or might be formed
when cosmic rays penetrate the earth atmosphere. There have been several
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Fig. 10. Same as in figure 9, but for different conversion models

reports of events with A ∼ 350–500 and Z ∼ 10–20 in cosmic ray events
[99,100,101,102,103]. Due to the very low charge to mass ratio, these so called
exotic cosmic ray events have been interpreted as a signal for the existence of
strangelets. Nevertheless, due to various experimental uncertainties and to other
possible theoretical interpretations [104,105], it is still premature to conclude
these exotic events are really due to strangelets.

Collisions between heavy atomic nuclei provide a promising possible way
to produce and to prove the existence of strangeletes in the laboratory. Many
of these experiments have been performed at the AGS accelerator at the
Brookhaven National Laboratory (BNL) [106,107,108,109], or at the Super Pro-
ton Synchrotron (SPS) at CERN [110,111]. For example, the recent experiment
E864 [109] at BNL–AGS made use of a beam of gold ions at 11.5 GeV per
nucleon, with platinum or lead targets.

Several mechanisms have been proposed for strangelets production in
nucleus–nucleus collisions. In the so called coalescence model [112] a conglomer-
ate of baryons is produced in the collision, and subsequently may fuse to form a
SQM drop. In another model strangelets are generated following Quark Gluon
Plasma (QGP) production [113,114].

To date all these nucleus–nucleus collision experiments have not found any
signal for the existence of strangelets. Thus, presently these experiments are only
able to set upper limits for strangelets production.
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Strangelets search will be carried on in the next generation of ultra-
relativistic heavy ion colliders, i.e. RHIC at BNL and LHC at CERN, although
these machines were mainly planned to detect the formation of QGP. Particu-
larly, a specific detector system for strangelets search will be CASTOR [115] at
CERN–LHC as a part of the ALICE experiment.

A very unpleasant consequence of the strange matter hypothesis could be
the possible formation of stable negatively charged strangelets during heavy ion
collisions at RHIC or at LHC. In fact, it has been pointed out [116] that these
“dangerous” negatively charged strangelets may trigger the disruption of our
planet. Luckily, there are various theoretical as well as experimental arguments
[116,117] to rule out this “Disaster Scenario”.

8 Final remarks

The main result of the present work (i.e. the likely existence of strange stars) is
based on the analysis of observational data for X-ray burster 4U 1820–30, the X-
ray sources SAX J1808.4–3658 and 4U 1728–34. The interpretation of these data
is done using standard models for the accretion mechanism, which is responsible
for the observed phenomena. The present uncertainties in our knowledge of the
accretion mechanism, and the disk–magnetosphere interaction, do not allow us
to definitely rule out the possibility of a neutron star for the X-ray sources
we discussed. For example, making a priori the conservative assumption that
the compact object in SAX J1808.4–3658 is a neutron star, and using a MR
relation similar to our eq.(45), Psaltis and Chakrabarty [73] try to constrain
disk–magnetosphere interaction models or to infer the presence of a quadrupole
magnetic moment in the compact star.

The X-ray binary systems discussed in the present work, are not the only
LMXBs which could harbour a strange star. Recent studies have shown that the
compact objects associated with the bursting X-ray pulsar GRO J1744-28 [118]
and the X-ray pulsar Her X-1 (ref.[25]) are likely strange star candidates. For
each of these X-ray sources (strange star candidates) the conservative assumption
of a neutron star as the central accretor would require some particular (possibly
ad hoc) assumption about the nature of the plasma accretion flow and/or the
structure of the stellar magnetic field. On the other hand, the possibility of a
strange star gives a simple and unifying picture for all the systems mentioned
above.
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Abstract. Neutron star configurations are considered as thermodynamical systems
for which a phase diagram in the angular velocity (Ω) - baryon number (N) plane is
obtained with a dividing line Ncrit(Ω) for quark core configurations. Trajectories of
neutron star evolution in this diagram are studied for different scenarios defined by
the external torque acting on the star due to radiation and/or mass accretion. They
show a characteristic change in the rotational kinematics when the star enters the
quark core regime. For isolated pulsars the braking index signal for deconfinement
has been studied in its dependence on the mass of the star. Model calculations of the
spin evolution of accreting low-mass X-ray binaries in the phase diagram have been
performed for different values of the initial magnetic field, its decay time as well as
initial mass and mass accretion rate. Population clustering of these objects at the line
Ncrit(Ω) in the phase diagram is suggested as an observable signal for the deconfinement
phase transition if it exists for spinnning and accreting neutron stars.

1 Neutron stars as thermodynamical systems

Quantum Chromodynamics (QCD) as the fundamental theory for strongly inter-
acting matter predicts a deconfined state of quarks and gluons under conditions
of sufficiently high temperatures and/or densities which occur, e.g., in heavy-ion
collisions, a few microseconds after the Big Bang or in the cores of pulsars. The
unambiguous detection of the phase transition from hadronic to quark matter
(or vice-versa) has been a challenge to particle and astrophysics over the past
two decades [1,2]. While the diagnostics of a phase transition in experiments
with heavy-ion beams faces the problems of strong nonequilibrium and finite
size, the dense matter in a compact star forms a macroscopic system in thermal
and chemical equilibrium for which signals of a phase transition shall be more
pronounced.

Such signals have been suggested in the form of characteristic changes of
observables such as the surface temperature [3], brightness [4], pulse timing [5]
and rotational mode instabilities [6] during the evolution of the compact object.
In particular the pulse timing signal has attracted much interest since it is due
to changes in the kinematics of rotation. Thus it could be used not only to
detect the occurrence but also to determine the size of the quark core from
the magnitude of the braking index deviation from the magnetic dipole value
[7]. Besides of the isolated pulsars, one can consider also the accreting compact
stars in low-mass X-ray binaries (LMXBs) as objects from which we can expect
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signals of a deconfinement transition in their interior [7,8,9]. The observation of
quasiperiodic brightness oscillations (QPOs) [10] for some LMXBs has lead to
very stringent constraints for masses and radii [11] which according to [12,13]
could even favour strange quark matter interiors over hadronic ones for these
objects. Due to the mass accretion flow these systems are candidates for the
formation of the most massive compact stars from which we expect to observe
signals of the transition to either quark core stars, to a third family of stars
[14] or to black holes. Each compact star configuratrion can be identified with a
thermodynamical system characterized by the total baryon number (or mass),
temperature, spin frequency and magnetic field as thermodynamical variables.

Since the evolutionary processes for the compact objects accompanying the
structural changes are slow enough we will consider here the case of rigid rotation
only and restrict ourselves to the degenerate systems at T = 0. The magnetic
and thermal evolution of the neutron stars we will consider as decoupled from
the mechanical evolution.

In this approximation we can introduce a classification of isolated and ac-
creting compact stars in the plane of their angular frequency Ω and mass (baryon
number N) which we will call phase diagram, see Fig. 1.

Each point in this phase diagram corresponds to a mechanical state of a
neutron star. Mechanical equilibrium of thermal pressure with gravitational and
centrifugal forces leads to a stationary distribution of matter inside the config-
uration. This distribution is determined by the central density and rotational
frequency. Thermal and chemical equilibrium are described by an equation of
state which determines the structure and composition of the compact star con-
figuration.

The requirements of stability restrict the region of stability of the quasis-
tationary rotating star configurations. From the right hand side of the phase
diagram there is a line which separates a region of stars which are collapsed to
black holes (BH) from the stable ones. At high baryon numbers beyond this line
gravitational forces dominate over pressure and centrifugal forces of matter.

From the top of the diagram the region of stable star configurations is
separated by the Keplerian frequencies ΩK(N) from that where mass shedding
under the centrifugal forces does not allow stationary rotating objects.

Inside the region of stationary rotators one can distinguish two types of
stationary rotating stars: those with quark matter cores (QCSs) and hadronic
stars (HS) [15]. The region of the QCSs is expected to be located at the bottom
right of the phase diagram in the region of the most massive and slowly rotating
compact stars. The critical line Ncrit(Ω) which separates the QCS region from
that of HSs is correlated with the local maxima of the moment of inertia with
respect to changes of the baryon number at given angular velocity Ω due to
the change of the internal structure of the compact object at the deconfinement
transition .

Using the analogy with the phase diagram of a conventional thermody-
namical system we can consider trajectories in this diagram as quasistationary
evolutionary processes.
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Fig. 1. Sketch of a phase diagram for spinning neutron stars with deconfinement phase
transition.

Since these processes for neutron stars have characteristic time scales (≈
106÷108 yr) much longer than those of typical observers it is almost impossible to
trace these trajectories directly. A possible strategy for measuring evolutionary
tracks will be to perform a statistics of the population of the different regions in
the phase diagram.

Our aim is to investigate the conditions under which the passage of the
phase border leads to observable significant clustering in the populations.

We will provide criteria under which a particular astrophysical scenario with
spin evolution could be qualified to signal a deconfinement transition.

2 Phase diagram for a stationary rotating star model

2.1 Equation of state with deconfinement transition

Since our focus is on the elucidation of qualitative features of signals from the
deconfinement transition in the pulsar timing we will use a generic form of an
equation of state (EoS) with such a transition [7] which is not excluded by the
mass and radius constraints derived from QPOs. In our case as well as in most
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of the approaches to quark deconfinement in neutron star matter a standard
two-phase description of the equation of state is applied where the hadronic
phase and the quark matter phase are modelled separately. The ambiguity in
the choice of the bag constant for the description of the quark matter phase can
be removed by a derivation of this quantity [16,17] from a dynamical confining
approach [18]. The resulting EoS is obtained by imposing Gibbs’ conditions for
phase equilibrium with the constraints of globally conserved baryon number and
electric charge [19,20,21].

Since nuclear forces are not fundamental, our knowledge about the equation
of state for nuclear and neutron star matter at high densities is not very precise.
There is not yet a description of the equation of state for strongly interacting
matter on the fundamental level in terms of quark and gluon degrees of freedom
where nucleons and mesons appear as composite structures. It is one of the
goals of nuclear astrophysics and of neutron star physics to use pulsars and
other compact objects as laboratories for studies of the nuclear forces and the
phases of nuclear matter [20,21]. The existence of several models for the equation
of state for dense stellar matter allows a variability in the phase structure of
neutron stars [22,23], therefore the phase diagram (Fig. 1) remains robust only
qualitativly.

For the detailed introduction of the phase diagram and a quantitative anal-
ysis using thermodynamical methods, we will employ a particular EoS model [7]
which is characterized by a relatively hard hadronic matter part.

2.2 Configurations of rotating stars

In our model calculations we assume quasistationary evolution with negligible
convection and without differential rotation which is justified when both the mass
load onto the star and the transfer of the angular momentum are sufficiently slow
processes.

For our treatment of rotation within general relativity we employ a per-
turbation expansion with respect to the ratio of the rotational and gravitational
energies for the homogeneous Newtonian spherical rotator with the mass density
ρ(0) equal to the central density, Erot/Egrav = (Ω/Ω̄)2, where Ω̄2 = 4πGρ(0).
This ratio is a small parameter, less than one up to the mass shedding limit [7].

The general form of the expansion allows us to describe the metric coef-
ficients and the distributions of pressure, energy density and hydrodynamical
enthalpy in the following form

X(r, θ;Ω) = X(0)(r) + (Ω/Ω̄)2X(2)(r, θ) + O(Ω4) , (1)

where X stands for one of the above mentioned quantities [7]. The series expan-
sion allows one to transform the Einstein equations into a coupled set of differ-
ential equations for the coefficient functions defined in (1), which can be solved
by recursion. The static solutions, obeying the Oppenheimer-Volkoff equations,
are contained in this expansion for the case Ω = 0 when only the functions with
superscript (0) remain. The other terms are corrections due to the rotation. We
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truncate higher order terms ∼ O(Ω4) in this expansion and neglect the change
of the frame dragging frequency, which appears at O(Ω3). For a more detailed
description of the method and analytic results in the integral representation of
the moment of inertia we refer to [7] and to works of Hartle and Thorne[24,25],
Sedrakian and Chubarian [26,27].
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Fig. 2. Phase structure of rotating hybrid stars in equatorial direction in dependence
of the angular velocity Ω for stars with different total baryon number: NB/N� =
1.3, 1.55, 1.8.

In Fig. 2 we show the critical regions of the phase transition in the inner
structure of the star configuration as well as the equatorial and polar radii in
the plane of angular velocity Ω versus distance from the center of the star . It
is obvious that with the increase of the angular velocity the star is deformating
its shape. The maximal excentricities of the configurations with NB = 1.3 N�,
NB = 1.55 N� and NB = 1.8 N� are ε(Ωmax) = 0.7603, ε(Ωmax) = 0.7655 and
ε(Ωmax) = 0.7659, respectively. Due to the changes of the central density the
quark core could disappear above a critical angular velocity.

It is the aim of the present paper to investigate the conditions for a verifi-
cation of the existence of the critical line Ncrit(Ω) by observation. We will show
evidence that in principle such a measurement is possible since this deconfine-
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ment transition line corresponds to a maximum of the moment of inertia, which
is the key quantity for the rotational behavior of compact objects, see Fig. 3.

In the case of rigid rotation the moment of inertia is defined by

I(Ω,N) = J(Ω,N)/Ω , (2)

where the angular momentum J(Ω,N) of the star can be expressed in invariant
form as

J(Ω,N) =
∫

T t
φ

√−gdV , (3)

with T t
φ being the nondiagonal element of the energy momentum tensor,

√−gdV
the invariant volume and g = det ||gμν || the determinant of the metric tensor.
We assume that the superdense compact object rotates stationary as a rigid
body, so that for a given time-interval both the angular velocity as well as the
baryon number can be considered as global parameters of the theory. The result
of our calculations for the moment of inertia (2) can be cast into the form

I = I(0) +
∑
α

ΔIα, (4)

where I(0) is the moment of inertia of the static configuration with the same
central density and ΔIα stands for contributions to the moment of inertia from
different rotational effects which are labeled by α: matter redistribution, shape
deformation, and changes in the centrifugal forces and the gravitational field [7].

In Fig. 3 we show the resulting phase diagram for compact star configura-
tions which exhibits four regions: (i) the region above the maximum frequency
ΩK(N) where no stationary rotating configurations are found, (ii) the region of
black holes for baryon numbers exceeding the maximum value Nmax(Ω), and the
region of stable compact stars which is subdivided by the critical line Ncrit(Ω)
into a region of (iii) quark core stars and another one of (iv) hadronic stars, re-
spectively. The numerical values for the critical lines are model dependent. For
this particular model EoS due to the hardness of the hadronic branch (linear
Walecka model [20]) there is a maximum value of the baryonic mass on the crit-
ical line Ncrit(Ωk) = 1.8N�, such that for stars more massive than that one all
stable rotating configurations have to have a quark core. This property can be
seen from the dependence of the phase structure of the star on angular velocity
in Fig. 2. For the whole interval of possible frequencies in the case of N = 1.8N�
the quark core radius remains approximately unchanged: Rcore ∼ 7 km.

3 Evolution scenarios with phase transitions

We want to explain why the occurence of a sharply peaked maximum for the
moment of inertia in the Ω−N plane entails observational consequences for the
angular velocity evolution of rotating compact objects. The basic formula which
governs the rotational dynamics is

Ω̇ =
K(N,Ω)

I(N,Ω) + Ω (∂I(N,Ω)/∂Ω)N

, (5)
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Fig. 3. Phase diagram for configurations of rotating compact objects in the plane of
angular velocity Ω and mass (baryon number N). Contour lines show the values of
the moment of inertia in M�km2. The line Ncrit(Ω) which separates hadronic from
quark core stars corresponds the set of configurations with a central density equal to
the critical density for the occurence of a pure quark matter phase.

where K = Kint + Kext is the net torque acting on the star due to in-
ternal and external forces. The internal torque is given by Kint(N,Ω) =
−ΩṄ (∂I(N,Ω)/∂N)Ω , the external one can be subdivided into an accretion
and a radiation term Kext = Kacc + Krad. The first one is due to all processes
which change the baryon number, Kacc = Ṅ dJ/dN and the second one con-
tains all processes which do not. For the example of magnetic dipole and/or
gravitational wave radiation it can be described by a power law Krad = βΩn,
see [28,29].

3.1 Spin-down scenario for isolated pulsars

The simple case of the spindown evolution of isolated (non-accreting, Ṅ = 0)
pulsars due to magnetic dipole radiation would be described by vertical lines
in Fig. 1. These objects can undergo a deconfinement transition if the baryon
number lies within the interval Nmin < N < Nmax, where for our model EoS
the endpoints of Ncrit(Ω) are Nmin = 1.49 N� and Nmax = 1.78 N�. As it has
been shown in [7], the braking index n(Ω) changes its value from n(Ω) > 3
in the region (iii) to n(Ω) < 3 in (iv). This is the braking index signal for a
deconfinement transition introduced by [5].
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Fig. 4. Braking index due to dipole radiation from fastly rotating isolated pulsars
as a function of the angular velocity. The minima of n(Ω) indicate the appearance/
disappearance of quark matter cores.

In Fig. 4 we display the result for the braking index n(Ω) for a set of
configurations with fixed total baryon numbers ranging from NB = 1.55 N� up
to NB = 1.9 N�, the region where during the spin-down evolution a quark matter
core could occur for our model EOS. We observe that only for configurations
within the interval of total baryon numbers 1.4 ≤ NB/N� ≤ 1.9 a quark matter
core occurs during the spin-down as a consequence of the increasing central
density, see also Fig. 2, and the braking index shows variations. The critical
angular velocity Ωcrit(NB) for the appearance of a quark matter core can be
found from the minimum of the braking index n(Ω). As can be seen from Fig.
4, all configurations with a quark matter core have braking indices n(Ω) < 3
and braking indices significantly larger than 3 can be considered as precursors
of the deconfinement transition. The magnitude of the jump in n(Ω) during the
transition to the quark core regime is a measure for the size of the quark core.
It would be even sufficient to observe the maximum of the braking index nmax
in order to infer not only the onset of deconfinement (Ωmax) but also the size
of the quark core to be developed during further spin-down from the maximum
deviation δn = nmax − 3 of the braking index. For the model EOS we used a
significant enhancement of the braking index does only occur for pulsars with
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periods P < 1.5 ms (corresponding to Ω > 4 kHz) which have not yet been
observed in nature. Thus the signal seems to be a weak one for most of the
possible candidate pulsars. However, this statement is model dependent since,
e.g., for the model EOS used by [5], which includes the strangeness degree of
freedom, a more dramatic signal at lower spin frequencies has been reported.
Therefore, a more complete investigation of the braking index for a set of realistic
EOS should be performed.

3.2 Scenarios with mass accretion

All other possible trajectories correspond to processes with variable baryon num-
ber (accretion). In the phase of hadronic stars, Ω̇ first decreases as long as the
moment of inertia monotonously increases with N . When passing the critical
line Ncrit(Ω) for the deconfinement transition, the moment of inertia starts de-
creasing and the internal torque term Kint changes sign. This leads to a narrow
dip for Ω̇(N) in the vicinity of this line. As a result, the phase diagram gets
populated for N

<∼ Ncrit(Ω) and depopulated for N
>∼ Ncrit(Ω) up to the sec-

ond maximum of I(N,Ω) close to the black-hole line Nmax(Ω). The resulting
population clustering of compact stars at the deconfinement transition line is
suggested to emerge as a signal for the occurence of stars with quark matter
cores. In contrast to this scenario, in the case without a deconfinement transi-
tion, the moment of inertia could at best saturate before the transition to the
black hole region and consequently Ω̇ would also saturate. This would entail a
smooth population of the phase diagram without a pronounced structure.

The clearest scenario could be the evolution along lines of constant Ω in the
phase diagram. These trajectories are associated with processes where the exter-
nal and internal torques are balanced. A situation like this has been described,
e.g. by [30] for accreting binaries emitting gravitational waves.

In the following we would like to explore which influence the magnitude of
the external torque Kext has on the pronouncedness of the quark matter signal.
In Fig. 5 we show evolutionary tracks (dotted) of configurations in the phase
diagram of Fig. 1 for different parameter values of the accretion torque and
different initial values J0 of the angular momentum.

As we have discussed above, the narrow dip for Ω̇ as a quark core signal
occurs when configurations cross the critical line during a spin-down phase. We
can quantify this criterion by introducing a minimal frequency Ωmin above which
spin-down occurs. It can be found as a solution of the equation for the torque
balance at the phase border

dJ/dN = Kint(Ncrit(Ωmin), Ωmin)/Ṅ . (6)

The dependence of Ωmin on dJ/dN shown in Fig. 6 can be used to sample
accreting compact objects from the region in which the suggested quark matter
signal should be most pronounced before making a population statistics.

The ideal candidates for such a search program are LMXBs for which the
discovery of strong and remarkably coherent high-frequency QPOs with the Rossi
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km2 kHz/N�] and different initial values J0 of the angular momentum. The curves in
the upper left panel correspond to J0[M� km2 kHz] = 300, 400, . . . , 1400 from bottom
to top.

X-ray Timing Explorer has provided new information about the masses and ro-
tation frequencies of the central compact object [10,11]. As a strategy for the
quark matter search in compact stars one should perform a population statis-
tics among those LMXBs exhibiting the QPO phenomenon which have a small
dJ/dN and a sufficiently large angular velocity, see Fig. 6. If, e.g., the recently
discussed period clustering for Atoll- and Z-sources [8,30] will correspond to ob-
jects in a narrow region of masses, this could be interpreted as a signal for the
deconfinement transition to be associated with a fragment of the critical line in
the phase diagram for rotating compact stars [9].

4 Signal for deconfinement in LMXBs

4.1 Spin-up trajectories for accretor

We consider the spin evolution of a compact star under mass accretion from
a low-mass companion star as a sequence of stationary states of configurations
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(points) in the phase diagram spanned by Ω and N . The process is governed by
the change in angular momentum of the star

d

dt
(I(N,Ω) Ω) = Kext , (7)

where
Kext =

√
GMṀ2r0 −Nout (8)

is the external torque due to both the specific angular momentum transfered
by the accreting plasma and the magnetic plus viscous stress given by Nout =
κμ2r−3

c , κ = 1/3 [31]. For a star with radius R and magnetic field strength
B, the magnetic moment is given by μ = R3 B. The co-rotating radius rc =(
GM/Ω2

)1/3 is very large (rc � r0) for slow rotators. The inner radius of the
accretion disc is

r0 ≈
{

R , μ < μc

0.52 rA , μ ≥ μc

where μc is that value of the magnetic moment of the star for which the disc
would touch the star surface. The characteristic Alfvén radius for spherical ac-
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cretion with the rate Ṁ = mṄ is rA =
(
2μ−4GMṀ2

)−1/7
. Since we are in-

terested in the case of fast rotation for which the spin-up torque due to the
accreting plasma in Eq. (8) is partly compensated by Nout, eventually leading
to a saturation of the spin-up, we neglect the spin-up torque in Nout which can
be important only for slow rotators [32],

From Eqs. (7), (8) one can obtain the first order differential equation for
the evolution of angular velocity

dΩ

dt
=

Kext(N,Ω)−Kint(N,Ω)
I(N,Ω) + Ω(∂I(N,Ω)/∂Ω)N

, (9)

where
Kint(N,Ω) = ΩṄ(∂I(N,Ω)/∂N)Ω . (10)

Solutions of (9) are trajectories in the Ω−N plane describing the spin evolu-
tion of accreting compact stars, see Fig. 7. Since I(N,Ω) exhibits characteristic
functional dependences [15] at the deconfinement phase transition line Ncrit(Ω)
we expect observable consequences in the Ṗ −P plane when this line is crossed.

In our model calculations we assume that both the mass accretion and the
angular momentum transfer processes are slow enough to justify the assumption
of quasistationary rigid rotation without convection. The moment of inertia of
the rotating star can be defined as I(N,Ω) = J(N,Ω)/Ω , where J(N,Ω) is the
angular momentum of the star. For a more detailed description of the method
and analytic results we refer to [7] and the works of [24,25], as well as [26,27].

The time dependence of the baryon number for the constant accreting rate
Ṅ is given by

N(t) = N(t0) + (t− t0)Ṅ . (11)

For the magnetic field of the accretors we consider the exponential decay [33]

B(t) = [B(0)−B∞] exp(−t/τB) + B∞ . (12)

We solve the equation for the spin-up evolution (9) of the accreting star for
decay times 107 ≤ τB [yr] ≤ 109 and initial magnetic fields in the range 0.2 ≤
B(0)[TG] ≤ 4.0. The remnant magnetic field is chosen to be B∞ = 10−4TG1

[34].
At high rotation frequency, both the angular momentum transfer from ac-

creting matter and the influence of magnetic fields can be small enough to let the
evolution of angular velocity be determined by the dependence of the moment
of inertia on the baryon number, i.e. on the total mass. This case is similar to
the one with negligible magnetic field considered in [7,29,35,36] where μ ≤ μc in
Eq. (9), so that only the so called internal torque term (10) remains.

In Fig. 7 we show evolutionary tracks of accretors in phase diagrams (left
panels) and show the corresponding spin evolution Ω(t) (right panels). In the
lower panels, the paths for possible spin-up evolution are shown for accretor
models initially having a quark matter core (N(0) = 1.55 N�, Ω(0) = 1 Hz).
1 1 TG= 1012 G
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Fig. 7. Spin evolution of an accreting compact star for different decay times of the
magnetic field and different accretion rates. Upper panels: initial configuration with
N(0) = 1.4 N�; Lower panels: N(0) = 1.55 N�; Ω(0) = 1 Hz in both cases. The
numbers in the legend box stand for (log(τB [yr]), log(Ṅ [N�/yr]). For instance (9,-8)
denotes τB = 109 yr and Ṅ = 10−8N�/ yr.

The upper panels show evolution of a hybrid star without a quark matter core
in the initial state (N(0) = 1.4 N�, Ω(0) = 1 Hz), containing quarks only in
mixed phase. We assume a value of Ṅ corresponding to observations made on
LMXBs, which are divided into Z sources with Ṅ ∼ 10−8N�/yr and A(toll)
sources accreting at rates Ṅ ∼ 10−10N�/yr [10,33,37].

For the case of a small magnetic field decay time τB = 107 yr (solid and
dotted lines in Fig.7) the spin-up evolution of the star cannot be stopped by the
magnetic braking term so that the maximal frequency consistent Ωmax(N) with
stationary rotation can be reached regardless whether the star did initially have
a pure quark matter core or not.

For long lived magnetic fields (τB = 109 yr, dashed and dot-dashed lines
in Fig. 7) the spin-up evolution deviates from the monotonous behaviour of the
previous case and shows a tendency to saturate. At a high accretion rate (dot-
dashed lines) the mass load onto the star can be sufficient to transform it to
a black hole before the maximum frequency could be reached whereas at low
accretion (dashed lines) the star spins up to the Kepler frequency limit.
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4.2 Waiting time and population clustering

The question arises whether there is any characteristic feature in the spin evo-
lution which distinguishes trajectories that traverse the critical phase transition
line from those remaining within the initial phase.

For an accretion rate as high as Ṅ = 10−8 N�/ yr the evolution of the spin
frequency in Fig. 7 shows a plateau where the angular velocity remains within
the narrow region between 2.1 ≤ Ω[kHz] ≤ 2.3 for the decay time τB = 109 yr
and between 0.4 ≤ Ω[kHz] ≤ 0.5 when τB = 107 yr. This plateau occurs for
stars evolving into the QCS region (upper panels) as well as for stars remaining
within the QCS region (lower panels). This saturation of spin frequencies is
mainly related to the compensation of spin-up and spin-down torques at a level
determined by the strength of the magnetic field. In order to perform a more
quantitative discussion of possible signals of the deconfinement phase transition
we present in Fig. 8 trajectories of the spin-up evolution in the Ṗ − P plane for
stars with N(0) = 1.4 N� and Ω(0) = 1 Hz in the initial state; the four sets of
accretion rates and magnetic field decay times coincide with those in Fig. 7.

When we compare the results for the above hybrid star model (solid lines)
with those of a hadronic star model (quark matter part of the hybrid model
omitted; dotted lines) we observe that only in the case of high accretion rate
(Ṅ = 10−8N�/yr, e.g. for Z sources) and long-lived magnetic field (τB = 109yr)
there is a significant difference in the behaviour of the period derivatives. The
evolution of a star with deconfinement phase transition shows a dip in the period
derivative in a narrow region of spin periods. This feature corresponds to a
plateau in the spin evolution which can be quantified by the waiting time τ =∣∣∣P/Ṗ ∣∣∣ = Ω/Ω̇. In Fig. 9 (lower and middle panels) we present this waiting time
in dependence on the rotation frequencies ν = Ω/(2π) for the relevant case
labeled (9,-8) in Figs. 7,8. The comparison of the trajectory for a hybrid star
surviving the phase trasition during the evolution (solid line) with those of a
star evolving within the hadronic and the QCS domains (dotted line and dashed
lines, respectively), demonstrates that an enhancement of the waiting time in
a narrow region of frequencies is a characteristic indicator for a deconfinement
transition in the accreting compact star.

The position of this peak in the waiting time depends on the initial value
of magnetic field, see Fig. 9. In the middle and lower panels of that Figure, we
show the waiting time distribution for B(0) = 0.75 TG and B(0) = 0.82 TG,
respectively. Maxima of the waiting time in a certain frequency region have the
consequence that the probability to observe objects there is increased (population
clustering). In the upper panel of this Figure the spin frequencies for observed
Z sources in LMXBs with QPOs [10] are shown for comparison. In order to
interprete the clustering of objects in the frequency interval 225 ≤ ν[Hz] ≤ 375
as a phenomenon related to the increase in the waiting time, we have to chose
initial magnetic field values in the range 1.0 ≥ B(0)[TG] ≥ 0.6 for the scenario
labeled (9,-8), see also the dashed lines in Fig.8.

The results of the previous section show that the waiting time for accreting
stars along their evolution trajectory is larger in a hadronic configuration than in
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occurs at the deconfinement transition for parameters which correspond to Z sources
(Ṅ = 10−8N�/yr) with slow magnetic field decay (τB = 109yr).

a QCS, after a time scale when the mass load onto the star becomes significant.
This suggests that if a hadronic star enters the QCS region, its spin evolution
gets enhanced thus depopulating the higher frequency branch of its trajectory
in the Ω −N plane.

In Fig. 10 we show contours of waiting time regions in the phase diagram.
The initial baryon number is N(0) = 1.4N� and the initial magnetic field is
taken from the interval 0.2 ≤ B(0)[TG] ≤ 4.0 .

The region of longest waiting times is located in a narrow branch around
the phase transition border and does not depend on the evolution scenario after
the passage of the border, when the depopulation occurs and the probability
to find an accreting compact star is reduced. Another smaller increase of the
waiting time and thus a population clustering could occur in a region where the
accretor is already a QCS. For an estimate of a population statistics we show the
region of evolutionary tracks when the values of initial magnetic field are within
0.6 ≤ B(0)[TG] ≤ 1.0 as suggested by the observation of frequency clustering in
the narrow interval 375 ≥ ν[Hz] ≥ 225, see Fig. 9.
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a hybrid stars (solid lines) shows a peak in the waiting time characteristic for the
deconfinement transition. Hadronic stars (dotted lines) and QCSs (dashed lines) have
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As a strategy of search for QCSs we suggest to select from the LMXBs
exhibiting the QPO phenomenon those accreting close to the Eddington limit
[33] and to determine simultaneously the spin frequency and the mass [38] for
sufficiently many of these objects. The emerging statistics of accreting compact
stars should then exhibit the population clustering shown in Fig. 10 when a
deconfinement transition is possible. If a structureless distribution of objects in
the Ω − N plane will be observed, then no firm conclusion about quark core
formation in compact stars can be made.

For the model equation of state on which the results of our present work are
based, we expect a baryon number clustering rather than a frequency clustering
to be a signal of the deconfinement transition in the compact stars of LMXBs.
The model independent result of our study is that a population clustering in
the phase diagram for accreting compact stars shall measure the critical line
Ncrit(Ω) which separates hadronic stars from QCSs where the shape of this curve
can discriminate between different models of the nuclear EoS at high densities.
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5 Summary and Outlook

On the example of the deconfinement transition from hadronic to quark matter
we have demonstrated that the rotational frequency of accreting neutron stars is
sensitive to changes of their inner structure. Overclustering of the population of
Z-sources of LMXBs in the frequency-mass plane (Ω −N plane) is suggested as
a direct measurement of the critical line for the deconfinement phase transition
since it is correlated to a maximum in the moment of inertia of the compact
star.

A generalization of the phase diagram method to other thermodynamical ob-
servables like thermal and electromagnetic processes is possible and will provide
a systematical tool for the study of observable consequences of the deconfine-
ment phase transition. A population statistics in the space of the appropriate
thermodynamic degrees of freedom allows a direct measurement of the shape
of hypersurfaces representing the phase border which is characteristic for the
equation of state of superdense stellar matter.
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In the present contribution we have considered the quasistationary evolu-
tion of accreting objects where the timescale for accreting about one solar mass
and thus completing the deconfinement phase transition processes is set by the
Eddington rate to be about 108 yr. Therefore this analysis concerns rather old
objects. For the cooling process, however, a characteristic timescale is the begin
of the photon cooling era determined mainly by the relation of neutrino and pho-
ton emission rates. It occurs typically after 102 − 104 yr, i.e. for much younger
objects. Phase transition effects, changing the emission rates, modify cooling
curves for the neutron star surface temperature typically in this time interval,
see Voskresensky’s contribution to this book [39].

We have focussed here on the deconfinement phase transition only. The
phase diagram method for developing strategies to investigate changes in the neu-
tron star interiors is more general and can be applied to other phase transitions
too, as e.g. the transition to superfluid nuclear matter [40], a kaon condensate
[41] or color superconducting quark matter [42,43,44] with typical consequences
for cooling and magnetic field evolution of the neutron star.

In order to consider the problem of magnetic field evolution in case of color
superconductivity and diquark condensation one can use the phase diagram
method to classify the magneto-hydrodynamical effects in the superfluid and
superconducting phases, e.g. the creation of vortices in the quark core and their
influence on the postglitch relaxation processes can be discussed [45].

One can also modify the phase diagram approach to the case of self bound
rotating quark stars (strange stars) [13]. The application of our method could
visualize the evolution of quark stars from normal to strange stars.

The present approach opens new perspectives for the search for an under-
standing of the occurence and properties of superdense stellar matter in neutron
star interiors.
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Abstract. Theoretically, the phase transition between the confined and deconfined
phases of quarks can have a remarkable effect on the spin properties of millisecond
pulsars and on the spin distribution of the population of x-ray neutron stars in low-
mass binaries. In the latter class of stars, the effect has already been observed—a
strong clustering in the population in a narrow band of spins. The observed clustering
cannot presently be uniquely assigned to the phase transition as cause. However, there
is another possible signal—not so far observed—in millisecond pulsars that we also
discuss which would have the same origin, and whose discovery would tend to confirm
the interpretation in terms of a phase transition in the stellar core.

1 Motivation

One of the great fascinations of neutron stars is the deep interior where the
density is a few times larger than the density of normal nuclei. There, in matter
inaccessible to us other than fleetingly in relativistic collisions, unfamiliar states
may exist. The most exotic of these is, of course, quark matter—the deconfined
phase of hadronic matter. It is quite plausible that ordinary canonical pulsars—
those like the Crab, and more slowly rotating ones—have a quark matter core, or
at least a mixed phase of quark and confined hadronic matter. If one were able
to close pack nucleons to a distance such that they were touching at a radius
of 0.5 fm, the density would be a mere 1/[(2r)3ρ0] = 6.5 larger than normal
nuclear density. If nucleons were close packed to their rms charge radius of 0.8
fm, the density would be 1.6 times nuclear density. Of course, fermions cannot be
close packed according to the exclusion principle since their localization would
give them enormous uncertainty in their momentum. They would be torn apart
before they could be squeezed so much. This simple, and perhaps oversimplified
argument, makes it plausible that ordinary (slowly rotating pulsars) have a quark
matter core essentially from birth.

By comparison, millisecond (ms) pulsars are centrifugally flattened in the
equatorial plane and the density is diluted in the interior. We shall suppose that
the critical phase transition density lies between the diluted density of millisec-
ond pulsars and the high density at the center of canonical pulsars. Then as a
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millisecond neutron star spins down because it is radiating angular momentum
in a broad band of electromagnetic frequencies as well as in a wind of particle-
antiparticle pairs, or as a canonical neutron star at some stage begins accreting
matter from a companion and is spun up, a change in phase of matter in the
inner part of the star will occur.

Whatever the high density phase, and we assume here it is the quark de-
confined one, it is softer than the normal phase. Otherwise no phase transition.
Consequently, a change in the phase of matter will be accompanied by a change
in the density distribution in the star. In the case of spindown of an isolated
ms pulsar, the weight of the surrounding part of the star will squeeze the softer
high density phase that is forming in the core. Conversely, an accreting neutron
star that is being spun up, will spin out the already present quark phase. In
either case, the star’s moment of inertia will change, and therefore its spin rate
will change to accommodate the conservation of angular momentum. Timing
of pulsar and x-ray neutron star rotation is a relatively easy observation, and
the effect of a phase change in the deep interior of neutron stars on timing or
frequency distribution is what we study here.

The deconfinement or reconfinement of quark matter in a rotating star is a
very slow process because it is governed by the rate of change of period, which is
very small. This is an advantage. If the processes were fast, we would not likely
witness the epoch of phase change, which is long, but nevertheless short (but not
too short) compared to the timescales of spindown of ms pulsars or of spinup
of accreting neutron stars in low-mass binaries. What we may see in the case of
isolated ms pulsars is an occasional one that is spinning up, even though losing
angular momentum to radiation. That would be a spectacular signal. What we
may see in the case of accreting x-ray neutron stars in low-mass binaries is an
unusual number of them falling within a small spin-frequency range—the range
that corresponds to the spinout of the quark matter phase. That also is an easily
observable signal. For stars of the same mass, the spontaneous spinup of isolated
pulsars should occur at about the same spin frequency as the clustering in the
population of neutron star accretors.

To place the canonical pulsars, ms pulsars, and x-ray accreting neutron stars
in context, we refer to Fig. 1. Canonical pulsars have large surface magnetic
fields, of the order of 1012 to 1013 G, and relatively long periods with an average
of about 0.7 s. The ms pulsars have low fields, of the order of 108 to 109 G,
and periods ranging from 1 to 10 ms. The x-ray stars that are accreting matter
from a low-mass non-degenerate companion are believed to be the link [1,2,3,4]
between the populations of canonical and ms pulsars—their path is indicated
schematically in the figure. (Of course, defining ms pulsars to be those lying in
the range of periods 1 to 10 ms is arbitrary.)

At present, fewer ms pulsars have been discovered than canonical pulsars.
This is likely to be a selection effect. It is much more difficult to detect ms pulsars
because there is radio noise in all directions (and therefore a possible signal) and
because of the dispersion by the interstellar electrons (from ionized hydrogen)
of any pulsed signal which might be present in the direction the telescope is
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Fig. 1. Magnetic field of radio pulsars as a function of rotation period. Death line shows
a combination of the two properties beyond which the beaming mechanism apparently
fails. Canonical pulsars are designated as (1), millisecond pulsars as (3) and a schematic
path for x-ray accreting neutron stars as (2). From Ref. [5].
.

pointing. If present the signal is weak and contains a band of radio frequencies.
Because of the different time-delay of each frequency, the frequencies are placed
into a number of bins. For ms pulsars, the time-delay across the range of frequen-
cies in a pulse is greater than the interval between pulses. Detection therefore
depends on a tedious analysis that corrects the time-delay in each frequency
bin for an assumed density of intervening interstellar gas; this is repeated for a
succession of assumed densities. If the process converges to a periodic pulse, a
pulsar has been discovered. Otherwise, the radio telescopes are pointed in a new
direction. Systematically covering the sky is obviously very costly and time con-
suming, and moreover, the present instrumentation is unable to detect pulsars
with periods less than 1 millisecond.

2 Spontaneous Spinup of Millisecond Pulsar

We discuss here the effect that a change of phase in the core of a neutron star
can have on the rotational properties of ms pulsars [6,7,8,9]. The analysis begins
with the energy-loss equation for a rotating magnetized star whose magnetic
axis is tilted with respect to the rotation axis. It is of historical interest to note
that even before pulsars were discovered and soon identified with hypothetical
neutron stars, Pacini had postulated the existence of a highly magnetized rotat-
ing neutron star inside the Crab nebula as the energy source of the nebula and
inferred some of the star’s properties [10]. It was already known before 1967 that
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the nebula, formed in a supernova in 1054, is being accelerated and illuminated
by a power source amounting to ∼ 4 × 1038 erg/s. This compares with a solar
luminosity of L� ∼ 4×1033 erg/s. The power output of the rotating Crab pulsar
equals that of 100,000 suns. Equating the power input to the nebula with the
power radiated by a rotating magnetic dipole,

4× 1038 ergs/s = −dE

dt
= − d

dt

(1
2
IΩ2

)
=

2
3
R6B2Ω4 sin2 α , (1)

and knowing the period and rate of change of period of the pulsar,

P ∼ 1
30

s, Ṗ ∼ 4× 10−13 s/s , (2)

the moment of inertia, surface magnetic field strength, and rotational energy of
the Crab pulsar can be inferred as

I ∼ 9× 1044 g cm2 ∼ 70 km3 ,

B ∼ 4× 1012 gauss ,

Erot ∼ 1
2IΩ

2 ∼ 2× 1049 ergs ∼ 1055 MeV .

(3)

For these estimates, we have assumed that sinα = 1, where α is the angle
between magnetic and rotational axis. (Gravitational units G = c = 1 are used
frequently. For convenient conversion formula to other units see ch. 3 of Ref. [5].)

Returning to the effect that a phase change can have on the rotational
properties of a pulsar through changes in the moment of inertia induced by a
phase transition, we rewrite Eq. (1) in greater generality:

Ė =
d

dt

(
1
2
IΩ2

)
= −CΩn+1 . (4)

Here we have written for convenience

C = (2/3)R6B2 sin2 α . (5)

We find the deceleration equation

Ω̇ = −C

I
Ωn

(
1 +

I ′Ω
2I

)−1

. (6)

In work previous to ours, I ′ ≡ dI/dΩ was assumed to vanish. This would be a
good approximation for canonical pulsars but not for millisecond pulsars.

The angular momentum of a rotating star in General Relativity can be ob-
tained numerically as a solution of Einstein’s equations or as a very complicated
algebraic expression in a perturbative expansion. The moment of inertia is then
obtained as I = J/Ω. The complication arises in two ways. First, a rotating star
sets the local inertial frames into rotation. This is referred to as frame dragging.
Second, the structure of the rotating star depends on the frame dragging fre-
quency, ω, which is position dependent, and on the spacetime metric, which also
depends on ω. Algebraic expressions were obtained in Refs. [11,9].
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Fig. 2. Apparent braking index for pure dipole radiation (n = 3) as function of ro-
tational frequency for stars of two different masses containing hyperons (but no first
order phase transition). (The mass indicated is for slow rotation.)

The index n in equation Eq. (4) equals three for magnetic dipole radiation.
In principle, it can be measured in terms of the frequency Ω and its first two
time derivatives. But the dependence of I on Ω introduces a correction so that
the dimensionless measurable braking index is given by

n(Ω) =
ΩΩ̈

Ω̇2
= n− 3I ′Ω + I ′′Ω2

2I + I ′Ω
. (7)

So the measurable braking index will differ from 3 for ms pulsars, if for no other
reason than that the centrifugal deformation of the star relaxes as the star spins
down. Such a dependence on Ω is illustrated in Fig. 2

It is especially noteworthy that the magnitude of the signal—the deviation
of n(Ω) from n—depends on dI/dΩ which is large, especially for millisecond pul-
sars, but the duration of the signal depends on dΩ/dt which is small. Therefore,
the variation of the braking index over time is very slow, the time-scale being
astronomical. So what one would observe over any observational era is a constant
braking index n(Ω) that is less (if no phase transition) than the n characteristic
of the energy-loss mechanism Eq. (4) even if the radiation were a pure multipole.
We will see that the effect of a phase transition on the measurable braking index
can be (but not necessarily) much more dramatic. (We distinguish between the
constant n = 3 of the energy-loss equation and the measurable quantity of Eq.
(7).)

We turn now to our original postulate—that canonical pulsars have a quark
matter phase in their central region but that ms pulsars which are centrifugally
diluted, do not. In the slow course of spindown the central density will rise how-
ever. When the critical density is reached, stiff nuclear matter will be replaced



310 N.K. Glendenning and F. Weber

slowly in the core by highly compressible quark matter. The overlaying layers of
nuclear matter weigh down on the core and compress it. Its density rises. The
star shrinks—mass is redistributed with growing concentration at the center.
The by-now more massive central region gravitationally compresses the outer
nuclear matter even further, amplifying the effect. The density profile for a star
at three angular velocities, (1) the limiting Kepler angular velocity at which the
star is stretched in the equatorial plane and its density is centrally diluted, (2)
an intermediate angular velocity, and (3) a non-rotating star, are shown in Fig.
3. We see that the central density rises with decreasing angular velocity by a
factor of three and the equatorial radius decreases by 30 percent. In contrast,
for a model for which the phase transition did not take place, the central density
would change by only a few percent [12]. The phase boundaries are shown in
Fig. 4 from the highest rotational frequency to zero rotation.

The redistribution of mass and shrinkage of the star change its moment of
inertia and hence the characteristics of its spin behavior. The star must spin up

Fig. 3. Mass profiles as a function of
equatorial radius of a star rotating at
three different frequencies, as marked. At
low frequency the star is very dense in
its core, having a 4 km central region of
highly compressible pure quark matter.
At intermediate frequency, the pure quark
matter phase is absent and the central 8
km is occupied by the mixed phase. At
higher frequency (nearer ΩK) the star is
relatively dilute in the center and centrifu-
gally stretched. Inflections at ε = 220 and
950 are the boundaries of the mixed phase.

Fig. 4. Radial boundaries at various ro-
tational frequencies separating (1) pure
quark matter, (2) mixed phase, (3) pure
hadronic phase, (4) ionic crust of neutron
rich nuclei and surface of star. The pure
quark phase appears only when the fre-
quency is below Ω ∼ 1370 rad/s. Note the
decreasing radius as the frequency falls.
The frequencies of two pulsars, the Crab
and PSR 1937+21 are marked for refer-
ence.
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to conserve angular momentum which is being carried off only slowly by the weak
electromagnetic dipole radiation. The star behaves like an ice skater who goes
into a spin with arms outstretched, is slowly spun down by friction, temporarily
spins up by pulling the arms inward, after which friction takes over again.

The behavior of the moment of inertia in the vicinity of the critical region
of growth of the quark matter core is shown in Fig. 5. The critical period of
rotation is P = 2π/Ω ∼ 4.6 ms. Much the same phenomenon was observed in
rotational nuclei during the 1970s [13,14] and had been predicted by Mottelson
and Valatin [15] though of course the phase changes are different (see Fig. 6).
The mechanism is evidently quite robust, but it need not occur in every model
star. In the present instance, the mass of the neutron star is very close to the
limiting mass of the non-rotating counterpart. This does not necessarily mean
that it will be a rare event. The mass of neutron stars is bounded from below by
the Chandrasekhar mass limit which is established by electron pressure and has
a value of ∼ 1.4M�. The limiting mass of neutron stars may be very little more
because of the softening of the nuclear equation of state by hyperonization and

Fig. 5. Moment of inertia of a neutron
star at angular velocities for which the
central density rises from below to above
critical density for the pure quark matter
phase as the centrifugal force decreases.
Time flows from large to small I. The most
arresting signal of the phase change is the
spontaneous spin-up that an isolated pul-
sar would undergo during the growth in
the region of pure quark matter. (Adapted
from Ref. [6].)

Fig. 6. Nuclear moment of inertia as a
function of squared frequency for 158Er,
showing backbending in the nuclear case.
Quantization of spin yields the unsmooth
curve compared to the one in Fig. 5.



312 N.K. Glendenning and F. Weber

quark deconfinement. This could be the reason that neutron star masses seem
to lie in a very small interval [5].

As already pointed out, the progression in time of the growth of the quark
core is very slow, being governed by the weak processes that cause the loss of
angular momentum to radiation. Using the computed moment of inertia for a
star of constant baryon number as shown in Fig. 5 we can integrate Eq. (6) to
find the epoch of spinup to endure for 2× 107 y. This is a small but significant
fraction of the spin-down time of ms pulsars which is ∼ 109y. So if ms pulsars are
near their limiting mass and are approximately described by our model, about
1 in 50 isolated ms pulsars should be spinning up instead of spinning down.
Presently, about 60 ms pulsars have been identified, and about half of them are
isolated, the others being in binary systems. Because the period of ms pulsars
can be measured with an accuracy that rivals atomic clocks, identification of the
direction of change of period would not take long. For example, PSR1937+21
has a period (measured on 29 November 1982 at 1903 UT)

P = 1.5578064487275(3) ms .

Its rate of change of period is a mere Ṗ ∼ 10−19. But because of the high accuracy
of the period measurement, it would take only two measurements spaced 0.3
hours apart to detect a unit change in the last significant figure, and hence to
detect in which direction the period is changing.

In principal, the period and first two time derivatives can be measured. The
dimensionless ratio formed from them yields the braking index n of the energy-
loss mechanism, corrected by a term that depends on changes in the moment
of inertia. In the case that a phase change causes a spinup of the pulsar, as in
Fig. 5, the measurable dimensionless quantity n(Ω) has two singularities at the
frequencies at which dI/dΩ switches between ±∞. From Eq. (6) it is clear that
Ω̇ will pass through zero and change sign at both turning points. Therefore,
the measurable braking index Eq. (7) will have singularities as shown in Fig.
7. The braking index with a nominal value of 3 will make enormous excursions
from that value. The braking index is shown in Fig. 8 over one decade in time,
and has an anomalous value for 108 y. However, the second time derivative has
never been measured for a ms pulsar because the rate of change of frequency
is so slow. So the one, and easily observable signal, is the spontaneous spinup
of an isolated ms pulsar. Such a pulsar has not yet been observed. But then,
only about 30 isolated ms pulsars have so far been detected, whereas, according
to our estimate, only 1 in 50 ms pulsars of mass close to the maximum would
presently be passing through the epoch in which a quark matter core grows.

We briefly describe the nuclear and quark matter phases used in this and
the following sections. More details can be found in the Appendix and in Ref. [6].
The initial mass of the star in our examples is 1.42M�. Briefly, confined nuclear
matter is described by a covariant Lagrangian describing the interaction of the
members of the baryon octet with scalar, vector and vector-isovector mesons and
solved in the meanfield approximation. Quark matter is described by the MIT
bag model.
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Fig. 7. Braking index for a pulsar that
passes through a change of phase in the
central region as a function of angular ve-
locity.

Fig. 8. Braking index as a function of
time over one decade in the critical region
in case of a phase transition in the interior
of the star. (From Ref. [7].)

3 Population Clustering in the Spin of Accreting X-ray
Neutron Stars in Binaries

Some neutron stars have non-degenerate companions. Such neutron stars are
radio silent because a wind from the hot surface of the companion disperses
the pulsed radio signal which a rotating magnetized neutron star would otherise
radiate into space. Late in the life of the neutron star, when the slowly evolving
companion begins to overflow the Roche lobe, mass transfer onto the neutron
star commences. The drag of the magnetic dipole torque will be eclipsed by the
transfer of mass and angular momentum onto the neutron star. It has begun its
evolution from an old slowly rotating neutron star with long period and high
magnetic field, to a ms pulsar with low field (sometimes referred to as a “recycled
pulsar”). During the long intermediate stage, when the surface and accretion ring
are heated to high temperature, the star radiates x-rays.

Any asymmetry in the mass accretion pattern will cause a variability in
x-ray emission. At an accretion rate of 10−9M�/y it would take only 108 y to
spin up the neutron star to a period of 2 ms (500 Hz). Consequently, millisecond
variability in the x-ray luminosity is expected and observed.

Accreting x-ray neutron stars provide a very interesting contrast to the
spin-down of isolated ms pulsars [16]. Presumably they are the link between the
canonical pulsars with mean period of 0.7 sec and the ms pulsars [1,2,3,4]. If
the critical deconfinement density falls within the range spanned by canonical
pulsars, quark matter will already exist in them but may be “spun” out of x-ray



314 N.K. Glendenning and F. Weber

stars as their rotational frequency increases during accretion. We can anticipate
that in a certain frequency range, the changing radial extent of the quark mat-
ter phase will actually inhibit changes in frequency because of the increase in
moment of inertia occasioned by the gradual disappearance of the quark matter
phase. Accretors will tend to spend a greater length of time in the critical fre-
quencies than otherwise. There will be an anomalous number of accretors that
appear at or near the same frequency. This is what was found recently in data
obtained with the Rossi X-ray Timing Explorer (RXTE). For an extensive re-
view of the discoveries made in the short time since this satellite was launched
(1995), see Ref. [17].

The spinup evolution of an accreting neutron star is a more complicated
problem than that of the spindown of an isolated ms pulsar of constant baryon
number. It is complicated by the accretion of matter (Ṁ >∼ 10−10M� yr−1), a
changing magnetic field strength (from B ∼ 1012 to ∼ 108 G), and the interac-
tion of the field with the accretion disk.

The change in moment of inertia as a function of rotational frequency caused
by spinup due to accretion is similar to that described in the previous section,
but in reverse [6]. However, there are additional phenomena as just mentioned.
The spin-up torque of the accreting matter causes a change in the star’s angular
momentum according to the relation [18,19,20]

d

dt
J ≡ d

dt
(IΩ) = NA(rm)−NM (rc) . (8)

The first term on the right-hand-side is the torque exerted on the star by a
mass element rotating at the base of the accretion disk with Keplerian velocity
ωK. Denoting this distance with rm, one readily finds that NA(rm) is given by
(G = c = 1)

NA(rm) = r2
m Ṁ ωK

= r2
m Ṁ

(
M

r3
m

)1/2

= Ṁ
√

Mrm ≡ Ṁ l̃(rm) , (9)

where Ṁ stands for the accretion rate, and l̃(rm) is the specific angular momen-
tum of the accreting matter (angular momentum added to the star per unit mass
of accreted matter). The second term on the right-hand-side of Eq. (8) stands
for the magnetic plus viscous torque term (κ ∼ 0.1),

NM (rc) = κμ2 r−3
c , (10)

with μ ≡ R3B the star’s magnetic moment. Upon substituting Eqs. (9) and (10)
into (8) and writing the time derivative d(IΩ)/dt as d(IΩ)/dt = (dI/dt)Ω +
I(dΩ/dt), the time evolution equation for the angular velocity Ω of the accreting
star can be written as

I(t)
dΩ(t)
dt

= Ṁ l̃(t)−Ω(t)
dI(t)
dt

− κμ(t)2 rc(t)−3 . (11)
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The quantities rm and rc denote fundamental length scales of the system. The
former, as mentioned above, denotes the radius of the inner edge of the accretion
disk and is given by (ξ ∼ 1)

rm = ξ rA . (12)

The latter stands for the co-rotating radius defined as

rc =
(
MΩ−2)1/3

. (13)

Accretion will be inhibited by a centrifugal barrier if the neutron star’s magne-
tosphere rotates faster than the Kepler frequency at the magnetosphere. Hence
rm < rc, otherwise accretion onto the star will cease. A further fundamental
lengthscale is set by the Alfén radius rA, which enters in Eq. (12). It is the
radius at which the magnetic energy density, B2(r)/8π, equals the total kinetic
energy density, ρ(r)v2(r)/2, of the accreting matter. For a dipole magnetic field
outside the star of magnitude

B(r) =
μ

r3 , (14)

this condition reads
1
8π

B2(rA) =
1
2
ρ(rA)v2(rA) , (15)

where v(rA) is of the order of the Keplerian velocity, or, which is similar, the
escape velocity at distance rA from the neutron star,

v(rA) =
(

2M
rA

)1/2

. (16)

The density ρ(rA) in Eq. (15) can be replaced by

ρ(rA) =
Ṁ

4πr2
Av

2(rA)
, (17)

which follows from the equation of continuity. With the aid of Eqs. (14), (16)
and (17), one obtains from (15) for the Alfén radius the following expression:

rA =
(

μ4

2MṀ2

)1/7

. (18)

It is instructive to write this equation as

rA = 7× 103 Ṁ
−2/7
−10 μ

4/7
30

(
M

M�

)−1/7

km , (19)

where Ṁ−10 ≡ Ṁ/(10−10 M� yr−1) and μ30 ≡ μ/(1030 G cm3). It shows that
canonical accretors (Ṁ−10 = 1) with strong magnetic fields of B ∼ 1012 G have
Alfén radii, and thus accretion disks, that are thousands of kilometers away from
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their surfaces. This is dramatically different for accretors whose magnetic fields
have weakened over time to values of ∼ 108 G, for instance. In this case, the
Alfén radius has shrunk to ∼ 40 km, which is just a few times the stellar radius.

We assume that the magnetic field evolves according to

B(t) = B(∞) + [B(0)−B(∞)]e−t/td (20)

with t = 0 at the start of accretion, and where B(0) = 1012 G, B(∞) = 108 G,
and td = 106 yr. Such a decay to an asymptotic value seems to be a feature of
some treatments of the magnetic field evolution of accreting neutron stars [21].
Moreover, it expresses the fact that canonical neutron stars have high magnetic
fields and ms pulsars have low fields (see Fig. 1). Beyond that, as just mentioned,
the condition that accretion can occur demands that rm < rc which inequality
places an upper limit on the magnitude of the magnetic field of ms neutron star
accretors of 2 to 6× 108 G [3].

Frequently, it has been assumed that the moment of inertia in Eq. (11)
does not respond to changes in the centrifugal force, and in that case, the above
equation yields a well-known estimate of the period to which a star can be
spun up [2]. The approximation is true for slow rotation. However, the response
of the star to rotation becomes increasingly important as the star is spun up.
Not only do changes in the distribution of matter occur but internal changes
in composition occur also because of changes induced in the central density by
centrifugal dilution [6]; both changes effect the moment of inertia and hence the
response of the star to accretion.

The moment of inertia of ms pulsars or of neutron star accretors has to be
computed in GR without making the usual assumption of slow rotation [22,23].
We use a previously obtained expression for the moment of inertia of a rotat-
ing star, good to second order in Ω [11]. The expression is too cumbersome to
reproduce here. Stars that are spun up to high frequencies close to the breakup
limit (Kepler frequency) undergo dramatic interior changes; the central density
may change by a factor of four or so over that of a slowly rotating star if a phase
change occurs during spin-up (cf. Fig. 3) [7,24].

Figure 9 shows how the moment of inertia changes for neutron stars in
binary systems that are spun up by mass accretion according to Eq. (11) until
0.4M� has been accreted. The neutron star models are fully described in Ref.
[6] and references therein and briefly in the Appendix of this article. The initial
mass of the star in our examples is 1.42M�. In one case, it is assumed that
a phase transition between quark matter and confined hadronic matter occurs,
and in the other that it does not. This accounts for the different initial moments
of inertia, and also, as we see, the response to spinup. Three accretion rates are
assumed, which range from Ṁ−10 = 1 to 100 (where Ṁ−10 is measured in units
of 10−10M� per year). These rates are in accord with observations made on low-
mass X-ray binaries (LMXBs) observed with the Rossi X-ray Timing Explorer
[17]. The observed objects, which are divided into Z sources and A(toll) sources,
appear to accrete at rates of Ṁ−10 ∼ 200 and Ṁ−10 ∼ 2, respectively. Although
in a given binary, Ṁ varies on a timescale of days, we take it to be the constant
average rate in our calculations.



Signal of Quark Deconfinement 317

106 107 108 109 1010

time (years)

70

95

120

145

170

I (
km

3 ) 100
10

(dM/dt)−10=1

Fig. 9. Moment of inertia of neutron stars as a function of time with (solid curves)
and without (dashed curves) quark matter core assuming 0.4M� is accreted. Results
for three average accretion rates are illustrated.

Figure 10 shows the spin evolution of accreting neutron stars as determined
by the changing moment of inertia and the spin evolution equation, Eq. (11).
Neutron stars without quark matter in their centers are spun up along the dashed
lines to equilibrium frequencies between about 600 Hz and 850 Hz, depending on
accretion rate and magnetic field. The dI/dt term for these sequences manifests
itself only insofar as it limits the equilibrium periods to values smaller than the
Kepler frequency, νK. In both Figs. 9 and 10 we assume that 0.4M� is accreted.
Otherwise, the maximum frequency attained is less, the less matter is accreted.

The spin-up scenario is dramatically different for neutron stars in which a
first order phase transition occurs. In this case, as known from Fig. 9, the tem-
poral conversion of quark matter into its mixed phase of quarks and confined
hadrons is accompanied by a pronounced increase of the stellar moment of in-
ertia. This increase contributes so significantly to the torque term N(rc) in Eq.
(11) that the spinup rate dΩ/dt is driven to a plateau around those frequencies
at which the pure quark matter core in the center of the neutron star gives way
to the mixed phase of confined hadronic matter and quark matter. The star
resumes ordinary spin-up when this transition is completed. The epoch during
which the spin rates reach a plateau are determined by attributes like the accre-
tion rate, magnetic field, and its assumed decay time. The epoch lasts between
∼ 107 and 109 yr depending on the accretion rate at the values taken for the
other factors.

We can translate the information in Fig. 10 into a frequency distribution
of X-ray stars by assuming that neutron stars begin their accretion evolution
at the average rate of one per million years. A different rate will only shift
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Fig. 10. Evolution of spin frequencies (ν ≡ Ω/2π) of accreting neutron stars with
(solid curves) and without (dashed curves) quark deconfinement if 0.4M� is accreted.
(If the mass of the donor star is less, then so is the maximum attainable frequency.)
The spin plateau around 200 Hz signals the ongoing process of quark confinement in
the stellar centers. Note that an equilibrium spin is eventually reached which is less
than the Kepler frequency.

some neutron stars from one bin to an adjacent one, but will not change the
basic form of the distribution. The donor masses in the binaries are believed to
range between 0.1 and 0.4M�. For lack of more precise knowledge, we assume a
uniform distribution of donor masses (or mass accreted) in this range and repeat
the calculation shown in Fig. 10 at intervals of 0.1M�.

The result for the computed distribution of rotational frequency of x-ray
neutron stars is shown in Fig. 11; it is striking. Spinout of the quark matter core
as the neutron star spins up is signalled by a spike in the spin distribution which
would be absent if there were no phase transition in our model of the neutron
star. We stress that what we plot is our prediction of the relative frequency
distribution of the underlying population of x-ray neutron stars—but the weight
given to the spike as compared to the high frequency tail depends sensitively on
the weight with which the donor masses are assigned. As already mentioned, we
give equal weight to donor masses between 0.1 and 0.4M�.

The objects above 400 Hz in Fig. 11 are actually unstable and will collapse
to black holes. Donors of all masses in the range just mentioned contribute to
neutron stars of spin up to 400 Hz. Neutron stars of lower initial mass than our
1.42M� with donors of mass at the higher end of their range will produce spins
above 400 Hz. In other words, the relative population in the peak as compared
to the background will be sensitive to the unknown factors (1) accretion rate
(2) initial mass distribution of neutron stars in LMXBs (3) mass distribution
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Fig. 11. Frequency distribution of X-ray neutron stars. Calculated distribution (open
histogram) for the underlying population is normalized to the number of observed
objects (18) at the peak. (The normalization causes a fractional number to appear in
many bins of the calculated distribution.) Data on neutron stars in LMXBs (shaded
histogram) is from Ref. [17]. See text and especially the reference for caveats to the
interpretation. The spike in the calculated spin distribution corresponds to the spinout
of the quark matter phase and the corresponding growth of the moment of inertia
as compressible quark matter is replaced by relatively incompressible nuclear matter.
Otherwise the spike would be absent.

of donor stars. However, the position of the peak in the spin distribution of x-
ray neutron stars is a property of nuclear matter and independent of the above
unknowns.

The calculated concentration in frequency of x-ray neutron stars is centered
around 200 Hz; this is about 100 Hz lower than the observed spinup anomaly
(see discussion below). This discrepancy should not be surprising in view of our
total ignorance1 of the equation of state above saturation density of nuclear
matter and the necessarily crude representation of hadronic matter in the two
phases in the absence of relevant solutions to the fundamental QCD theory of
strong interactions. We represent the confined phase by relativistic nuclear field
theory and the deconfined phase by the MIT bag model. However crude these or
any other models of hadronic matter may be, the physics underlying the effect
of a phase transition on spin rate is robust, although not inevitable. We have
cited the example of an analogous phenomenon found in rotating nuclei in the
previous section.

The data that we have plotted in Fig. 11 is gathered from Tables 2, 3, and 4
of the review article of van der Klis concerning discoveries made with the Rossi
X-ray Timing Explorer, launched near the end of 1995 [17]. The interpretation
of millisecond oscillations in the x-ray emission, either that found in bursts or of
1 There are upcoming radioactive beam experiments from which it is hoped to gain

information on the equation of state of asymmetric nuclear matter [25,26,27].



320 N.K. Glendenning and F. Weber

Fig. 12. Data on frequency distribution of millisecond pulsars (1 ≤ P < 10 ms).
Frequency bins are 50 Hz wide.

the difference between two observed quasi-periodic oscillations (QPOs) in x-ray
brightness, is ambiguous in some cases. In particular, the highest frequency near
600 Hz in the “observed” data displayed in our figure, may actually be twice
the rotational frequency of the star [17]. The millisecond variability in x-ray
phenomena associated with accretion onto neutron stars that has been observed
since the launch of the satellite was anticipated several decades ago. However,
the consistency of the phenomena from one binary to another raises questions
about interpretation. In this sense, the field is quite young. We refer to the above
cited review article for details and references to the extensive literature.

Nevertheless, the basic feature will probably survive—a clustering in rota-
tional frequencies of x-ray neutron stars and a higher frequency tail. Certainly
there are high frequency pulsars. A histogram of ms pulsar frequencies shows a
broad distribution around 200 Hz, and a tail extending to ∼ 600 Hz as shown
in Fig. 12. So both the (sparse) data on X-ray objects and on ms pulsars seem
to agree on a peak in the number of stars at moderately high rotational fre-
quency and on an attenuation at high frequency. For ms pulsars, however, the
attenuation at high frequency may be partly a selection effect due to interstellar
disperion of the radio signal.

There have been other suggestions as to the cause of the spin clustering of x-
ray accretors, several of which we cite (c.f. [28,29,30]). These works are concerned
with the balance of the spinup torque by a gravitational radiation torque. Our
proposal has several merits: (1) the mechanism involving a change in moment of
inertia triggered by a phase transition in the stellar core due to changing density
profile in the star as its spin changes is robust—it is known to occur in rotating
nuclei; (2) The phase transition should occur in reverse in isolated ms pulsars
and in neutron star accretors and at about the same frequency for similar mass
stars; (3) The phase transition causes accretion induced spinup to stall for a long
epoch, but to resume after the quark core has been expelled, thus accounting
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for high spin objects like very fast ms pulsars as well as the clustering in spin of
the popuation of accretors.

4 Evolution from Canonical to Millisecond Pulsar

In the foregoing we have discussed possible signals of a phase transition in iso-
lated ms pulsars and in accreting x-ray neutron stars in binary orbit with a
low-mass companion. Spinup by mass accretion is believed to be the pathway
from the relatively slowly rotating canonical pulsars formed by conservation of
angular momentum in the core collapse of massive stars, and the rapidly rotating
millisecond pulsars [1,2]. In this section we trace some of the possible evolution-
ary routes under the various physical conditions under which accretion occurs
[31].

The evolutionary track between canonical and ms pulsars in the coordinates
of magnetic field strength and rotational period (refer to Fig. 1) will depend on
the rate of mass accretion, its duration, the centrifugal change in the moment
of inertia of the star, the strength of the magnetic field and timescale of its
decay, and possibly other affects. Many papers have been devoted to the decay
of the magnetic field. It is an extremely complicated subject, with many physical
uncertainties such as the actual location of the field, whether in the core or crust,
the degree to which the crust is impregnated with impurities, crustal heating and
resultant reduction in conductivity and therefore increase in ohmic field decay,
screening of the magnetic field by accreted material, and so on.

The field is believed to decay only weakly due to ohmic resistance in
canonical pulsars, but very significantly if in binary orbit with a low-mass non-
degenerate star, when the companion fills its Roche lobe. This era can last up
to 109 y and cause field decay by several orders of magnitude. For a review of
the literature and several evolutionary scenarios, see Refs. [20,21,32,33,34].

While there is no consensus concerning the magnetic field decay, observa-
tionally, we know that canonical pulsars have fields of ∼ 1011 to 1013G, while
millisecond pulsars have fields that lie in the range ∼ 108 to 109G. We shall rely
on this observational fact, and assume that the field decays according to Eq.
(20). where B(∞) = 108 G, B(0) = 1012 G and td = 105 to 107 yr. Moreover,
this is the general form found in some scenarios [21]. However, we shall also make
a comparison with a purely exponential decay.

There are three distinct aspects to developing an evolutionary framework.
One has to do with the accretion process itself, which has been developed by a
number of authors in the framework of classical physics([18,19,20]) and which we
employed in the previous section. Another has to do with the field decay, which
in a complete theory will be coupled to the accretion process. The third aspect
has to do with the structure of the neutron star and its response to added mass,
but most especially to its response to changes in rotational frequency due to the
changing centrifugal forces.

Typically, the moment of inertia has been computed in general relativity
for a non-rotating star [22,23]. It is based on the Oppenheimer-Volkoff metric.
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Fig. 13. Evolutionary tracks traced by neutron stars in the X-ray accretion stage,
beginning on the death line with large B field and ending as millisecond stars, for
various accretion rates. Here td = 106yr.

However, for the purpose of tracing the evolution of an accreting star from ∼ 1
Hz to 400 − 600 Hz we do not neglect the response of the shape, structure
and composition of the star as it is spun up over this vast range of frequencies
from essentially zero to values that approach the Kepler frequency. Nor do we
neglect the dragging of local inertial frames. These features are included in our
calculation of the tracks of neutron stars from canonical objects starting with
large fields and very small frequencies at the “death line” to the small fields but
rapid rotation of millisecond pulsars. However, the expression of the moment of
inertia and a definition of the various factors that enter are too long to reproduce
here. We refer instead to our derivation given in Refs. [11,9] which is computed
to second order in the rotational angular momentum and found to be accurate
to ∼ 10 % when compared to numerical solutions for a rotating star [35]. In the
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Fig. 14. Evolutionary tracks traced by neutron stars in the X-ray accretion stage,
beginning on the death line with purely exponential decay of the B field. As in Fig.
13, td = 106yr.

present context, numerical solutions were obtained in Ref. [36], and semianalytic
approximations were employed in Ref. [37].

The initial conditions for the evolution are arbitrary to a high degree.
Canonical pulsars have a broad range of magnetic field strengths. The period of
the pulsar at the time that the companion overflows its Roche lobe and accretion
commences is also arbitrary. Any observed sample of x-ray accretors presumably
spans a range in these variables. For concreteness, we assume that the pulsar
has a field of 1012 G and that the period of the pulsar is 1 ms when accretion
begins. The donor mass in the low-mass binaries are in the range 0.1 to 0.4M�.
Our sample calculations are for accretion of up to 0.4M�.

We find essentially a continuum of evolutionary tracks in the B − P plane
according to the rate at which matter is accreted from the companion, and
the rate at which the magnetic field decays. The evolutionary tracks essentially
fill all the space in the B-P plane, starting at our assumed initial condition
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of an old canonical pulsar with field of 1012 G, and extending downward in
field strength, broadening to fill the space on both sides of the deathline, and
extending to the small periods of millisecond pulsars. All are potential tracks
of some particular binary pair, since accretion rates vary by several orders of
magnitude and presumably so do decay rates of the magnetic field. As a first
orientation as to our results and how they relate to known pulsars as regards their
magnetic field strength and their rotational period, we show the evolutionary
tracks for four different accretion rates given in units of Ṁ = 10−10 solar masses
per year in Fig. 13. The decay rate of the magnetic field is taken to have the
value td = 106 yr in each case. The x-ray neutron star gains angular momentum
and its period decreases, and over a longer timescale, the magnetic field decays.
One can see already that a wide swathe of B and P is traced out.

In the above example, the field was assumed to decay to a finite asymp-
totic value of 108 Gauss. A very different assumption, namely that the field
decays eventually to zero, B(t) = B(0)e−t/td , modifies only the results below
the asymptotic value, as is seen by comparing Fig. 13 and 14. However, the con-
clusion concerning the origin of millisecond pulsars is quite different. For purely
exponential decay, one would conclude that high frequency pulsars are created
only in high accretion rate binaries.

In the remainder of the paper, we assume the field decays to an asymptotic
value, since from the above comparison we see how exponential decay would
modify the picture.

We show time tags on a sample track in Fig. 15 which provides some sense of
time lapse. The first part of a track is traversed in short time, but the remainder
ever more slowly. This shows up also in dP/dt as a function of time. For each of
three accretion rates we show the dependence on three field decay constants in
Figs. 16, 17 and 18. Depending on decay rate of the field and accretion rate, an
X-ray neutron star may spend some time on either side of the death line, but if
it accreted long enough, always ends up as a candidate for a millisecond pulsar if
the magnetic filed decays to an asymptotic value such as was assumed. However,
if the field decays exponentially to zero, only high accretion rates would lead to
millisecond pulsars. Of course, if accretion turns off at some time, the evolution
is arrested.

In summary, we have computed the evolutionary tracks in the B −P plane
due to mass accretion onto neutron stars beginning at the death line with a
typical field strength of 1012 Gauss, to shorter periods and low fields. According
to the assumed accretion rate and decay constant for the magnetic field, the
tracks indicate that the individual binaries with characteristics ranging from
Z to Atoll sources will evolve along paths that cover a broad swathe in the
B−P plane. These include tracks of X-ray stars corresponding to low accretion
rates that follow a path beyond the death line in the so-called “graveyard’.
We have assumed two particular forms for the law of decay of the magnetic
field. (1) The field approaches an asymptotic value of 108 Gauss such as is
typical of millisecond pulsars. This assumption leads to a particular form for the
termination of evolutionary tracks. All accretors, no matter what the accretion
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Fig. 15. Time tags expressed in years are
shown for one of the evolutionary tracks
corresponding to a decay constant for the
magnetic field of td = 105 y.

Fig. 16. Evolutionary tracks for a neu-
tron star starting at the death line and
evolving by accretion to lower field and
high frequency for an accretion rate 1 in
units of 10−10 solar masses per year, and
for three values of the magnetic field decay
rate td as marked.

rate, will end with millisecond periods, unless accretion ceases beforehand. (2) If
instead, we had assumed a purely exponential decay, the tracks would not tend
to an asymptotic value, but would continue to decrease in the strength of B.
The tracks would still cover a broad swathe in the B − P plane. But one would
conclude that only the higher accretion rate binaries, particularly the Z-sources,
could produce millisecond period neutron stars. If accretion continues for too
long a time, the neutron star will be carried to very low fields and across the
death line, or an overcritical mass will have been accreted, leading instead to a
black hole.

5 Appendices

First Order Phase Transition in Neutron Stars

We briefly recall some of the main characteristics of a first order phase transition
in any substance having more than one conserved quantity, or as we will call it
in the context of physics—conserved charge—such as baryon number or electric
charge [38]. These are the two conserved quantities relevant to neutron stars.
They have zero net electric charge and are made from baryons.

What makes a substance having more than one conserved charge different
from a substance having only one, is that charges in the first case can be ex-
changed between two phases of the substance in equilibrium so as to minimize
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Fig. 16 but with a different accretion rate
(dM/dt)−10 = 10.

Fig. 18. Evolutionary tracks similar to
Fig. 16 but with a different accretion rate
(dM/dt)−10 = 100.

the energy. And the concentration of the charges can readjust at each propor-
tion of the phases to minimize the energy. There is no such degree of freedom
in a single-component substance, and there are n − 1 degrees of freedom in a
substance having n independent components or conserved charges.

In a single-component substance, the pressure at constant temperature re-
mains unaltered for all proportions of the two phases as the substance is com-
pressed. Only the proportion of the phases changes. This is not so for a substance
of more than one conserved charge. The degree(s) of freedom to readjust the con-
centrations of the charges at each proportion of the phases causes a change in
all internal properties of the two phases as their proportion changes including
their common pressure under conditions of constant temperature.

The fact that the pressure varies as the proportion of phases in equilibrium
in neutron star matter has an immediate consequence. The mixed phase of two
phases in equilibrium will span a finite radial distance in a star. If the pressure
were a constant for all proportions, then the mixed phase would be squeezed
out of the star because the pressure varies monotonically, being greatest at the
center and zero at the edge of the star. In early work on phase transitions in
neutron stars, they were always treated as having constant pressure at the zero
temperature of the star, so the mixed phase never appeared in any of those
models.

The difference in properties of first order phase transitions in a one-
component substance and one with several independent components or con-
served charges is easily proven. First consider a one-component substance for
which equilibrium of two phases, A and B is expressed by
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pA(μ, T ) = pB(μ, T ) . (21)

At constant T , the solution for the chemical potential is obviously unique and
independent of the proportion of the phases. So all properties of the two phases
remain unaltered as long as they are in equilibrium, no matter the proportion.

Now consider a substance having two conserved charges (or indepen-
dent components). For definiteness we consider the two independent conserved
charges of neutron star matter, baryon number and electric charge, whose densi-
ties we denote by ρ and q. For the corresponding chemical potentials we choose
those of the neutron, μn, and electron, μe. The chemical potentials of all other
particles can be written in terms of these independent ones. Gibbs phase equilib-
rium between the confined hadronic phase C and the deconfined quark matter
phase D is now expressed as

pC(μn, μe, T ) = pD(μn, μe, T ) . (22)

This equation is insufficient to find the chemical potentials. At fixed T , it must
be supplemented by another, say a statement of the conservation of one of the
conserved charges. How should that statement be made? If one of the charges
is the electric charge, demanding that the electric charge density should vanish
identically in both phases would satisfy the condition of charge neutrality as
required of a star.2 That is in fact how charge neutrality in neutron stars was
enforced for many years. However, it is overly restrictive. The net charge must
vanish, but the charge density need not. Only the integrated electric charge
density must vanish,

∫
q(r)d3r = 0.3 We refer to this as global conservation

rather than local. It releases a degree of freedom that the physical system can
exploit to find the minimum energy. To express this explicitly, we note that
according to the preparation of the system, whether in the laboratory, or in a
supernova, the concentration of the charges is fixed when the system is in a
single phase. Denote the concentration by

c = Q/B . (23)

However, when conditions of temperature or pressure change to bring the system
into two phases equilibrium, the concentrations in each can be different

cC = QC/BC , cD = QD/BD (24)

provided only that the total charges are conserved,

QC + QD = Q, BC + BD = B . (25)

Here Q and B denote the total electric and baryon charge in a volume V . The
rearrangement of charges will take place to minimize the energy of the system.
2 The Coulomb force is so much stronger than the gravitational that the net charge

per baryon has to be less than 10−36 which we can call zero.
3 Familiar examples of neutral systems that have finite charge densities of opposite

sign are atoms and neutrons.
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The force that is responsible for exploiting this degree of freedom in neutron
stars is the one responsible for the symmetry energy in nuclei and the valley of
beta stability. Since neutron stars are far from symmetry, the symmetry energy
is quite large; the difference in Fermi energies of neutron and proton, and the
coupling of baryon isospin to the neutral rho meson are responsible.

For a uniform medium, and every sufficiently small region V in a neutron
star is uniform to high accuracy, the statement of global conservation is∫

VC

qC(r) d3r +
∫

VD

qD(r) d3r = VC qC + VD qD = Q (26)

where VC and VD denote the volume occupied by the two phases respectively.
This can be written more conveniently as

(1− χ) qC(μn, μe) + χ qD(μn, μe) = Q/V ≡ q (27)

where qC denotes the density of the conserved charge in the confined phase, qD

in the deconfined phase, and

χ = VD/V, V = VC + VD (28)

is the volume proportion of phase D and q is the volume averaged electric charge
(which for a star is zero). Now, equations (22) and (27) are sufficient to find
μn and μe. But notice that the solutions depend on the volume proportion χ.
Therefore, also all properties of the two phases depend on their proportion,
including the common pressure. Having solved for the chemical potentials (and
all field quantities specified by their equations of motion), the densities of the
baryon conserved charge in the phases C and D, are given by ρC(μn, μe) and
ρD(μn, μe). The volume average of the baryon density is given by an equation
corresponding to Eq. (27).

Let us now discuss the consequences of opening the degree of freedom em-
bodied in Eq. (27), ie., in allowing electric charge (and strangeness) to be ex-
changed by the two phases in equilibrium so as to achieve the minimum energy
at the corresponding baryon density. Because of the long range of the Coulomb
force the Coulomb energy will be minimized when regions of like charge are
small, whereas the surface interface energy will be minimized when the surface
areas of the regions of the two phases is small. These are opposing tendencies,
and in first order can be reconciled by minimizing their sum. A Coulomb lattice
will form [38] of such a size and geometry of the rare phase immersed at spacings
[39,40] in the dominant phase so as to minimize the energy.

In better approximation, the total energy, consisting of the sum of bulk
energies, the surface and Coulomb energies and higher corrections such as the
curvature energy,

ETotal ≈ EBulk + ESurface + ECoulomb + ECurvature + · · · , (29)

should be minimized. In still better approximation, the convenient partition of
the energy as above would be replaced by a lattice calculation of the total energy
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Fig. 19. Equation of state for a first order phase transition from neutron star matter in
its confined to deconfined phases (marked hybrid). Note the monotonically increasing
pressure. Comparison is made with the equation of state of neutron star matter in the
confined phase with nucleons hyperons and leptons in equilibrium.

[41]. In general, the opening of the degree(s) of freedom to conserve charges
globally rather than locally, or any other arbitrary way, can only lower the total
energy from the value it would have were the degree of freedom closed, or in
very special cases leave it unchanged. However, in the case of a neutron star,
the degree of freedom allows the bulk energy in the normal phase to be lowered
by decreasing the charge asymmetry of neutron star matter, so exchange of
charge between the confined and deconfined phases is evidently favorable. It is
unphysical to choose an arbitrary value of surface tension such that the mixed
phase is energetically unfavored. The surface tension should be calculated self-
consistently by minimizing the total energy Eq. (29), when possible [42].

However, our purpose here is not to calculate the geometric structure4 of the
mixed phase but to exhibit the equation of state for a first order deconfinement
transition in neutron star matter according to the above principles. Fig. 19 shows
the equation of state with the pure phases at low and high density and the mixed
phase between. Note, as pointed out before that though the phase transition is
first order, having as it does a mixed phase, the pressure (and all other internal
properties) vary with density. The monotonic increase of pressure contrasts with
early treatments of phase transitions in neutron stars prior to 1991, for which
approximations rendered a constant pressure in the mixed phase [43]. For a
constant pressure phase transition, gravity will squeeze out the mixed phase.
Pressure is a monotonically decreasing function of distance from the center of a
star, just as it is in our atmosphere.
4 See Ref. [47] for a review.
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Description of the Confined and Deconfined Phases

To describe the confined phase of neutron star matter, we use a generalization
[44] of relativistic nuclear field theory solved at the mean field level in which
nucleons and hyperons (the baryon octet) are coupled to scalar, vector and
vector-isovector mesons. A full description of how the theory can be solved for
neutron star matter can be found in [5,44]. The Lagrangian is

L =
∑
B

ψB(iγμ∂
μ −mB + gσBσ − gωBγμω

μ

−1
2
gρBγμτ · ρμ)ψB +

1
2
(∂μσ∂

μσ −m2
σσ

2)

− 1
4
ωμνω

μν +
1
2
m2

ωωμω
μ − 1

4
ρμν ·ρμν +

1
2
m2

ρρμ ·ρμ

− 1
3
bmn(gσσ)3 − 1

4
c(gσσ)4

+
∑

e−,μ−
ψλ

(
iγμ∂

μ −mλ

)
ψλ . (30)

The sum on B is over all charge states of the baryon octet. The parameters of the
nuclear Lagrangian can be algebaically determined (see 2’nd ed. of [5]) so that
symmetric nuclear matter has the following properties: binding energy of sym-
metric nuclear matter B/A = −16.3 MeV, saturation density ρ = 0.153 fm−3,
compression modulus K = 300 MeV, symmetry energy coefficient asym = 32.5
MeV, nucleon effective mass at saturation m�

sat = 0.7m and ratio of hyperon
to nucleon couplings xσ = 0.6, xω = 0.653 = xρ that yield, together with the
foregoing parameters, the correct Λ binding in nuclear matter [45]).

Quark matter is treated in a version of the MIT bag model with the three
light flavor quarks (mu = md = 0, ms = 150 MeV) as described in Ref. [46]. A
value of the bag constant B1/4 = 180 MeV is employed.
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Supernova Explosions
and Neutron Star Formation

Hans-Thomas Janka, Konstantinos Kifonidis, and Markus Rampp

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching,
Germany

Abstract. The current picture of the collapse and explosion of massive stars and the
formation of neutron stars is reviewed. According to the favored scenario, however by
no means proven and undisputed, neutrinos deposit the energy of the explosion in
the stellar medium which surrounds the nascent neutron star. Observations, in par-
ticular of Supernova 1987A, suggest that mixing processes play an important role in
the expanding star, and multi-dimensional simulations show that these are linked to
convective instabilities in the immediate vicinity of the neutron star. Convectively en-
hanced energy transport inside the neutron star can have important consequences for
the neutrino emission and thus the neutrino-heating mechanism. This also holds for a
suppression of the neutrino interactions at nuclear densities. Multi-dimensional hydro-
dynamics, general relativity, and a better understanding of the neutrino interactions
in neutron star matter may be crucial to resolve the problem that state-of-the-art
spherical models not yield explosions even with a very accurate treatment of neutrino
transport by solving the Boltzmann equation.

1 Introduction

Baade and Zwicky [2] were the first who speculated about a connection between
supernova explosions and the origin of neutron stars. They recognized that stellar
cores must become unstable because neutrons, being produced by captures of
degenerate electrons on protons, define an energetically advantageous state. The
gravitational binding energy liberated by the collapse of a stellar core could
power a supernova explosion. More than thirty years later, Colgate and White
explored this idea by performing numerical simulations [21]. Their models showed
that the prompt hydrodynamical shock, which forms at the moment of core
bounce, is not able to reach the outer layers of the star due to severe energy losses
by photointegration of iron nuclei. Therefore they suggested that the neutrinos,
which are emitted in huge numbers from the hot, collapsed core and carry away
the binding energy of the forming neutron star, deposit a fraction of their energy
in the stellar medium external to the shock. Later, more accurate simulations
with an improved treatment of the input physics such as nuclear equation of state
and neutrino transport [9,10,11,12,48,3,59] confirmed the failure of the prompt
shock, but could not find the neutrino-driven explosion imagined by Colgate and
White.

The discovery of weak neutral currents, whose existence has been predicted
by the standard model of electro-weak interactions, had a major influence also on
supernova models. It became clear that the neutrinos are strongly coupled to the
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stellar plasma and can escape only on timescales of seconds. This implied that
the neutrino luminosities did not become large enough that the rate of energy
or momentum transfer by neutrino interactions with the nuclei in the stellar
plasma ahead of the supernova shock could become dynamically important. In
1982, however, Jim Wilson discovered [62] that the stalled prompt shock can be
revived by neutrino heating in the dissociated postshock medium on a longer
timescale. While immediately after shock breakout neutrino emission extracts
energy from the shocked gas, energy transfer from neutrinos to the postshock
medium is favored hundreds of milliseconds later. If the shock has expanded to a
larger radius and the postshock temperature has decreased, energetic neutrinos,
which stream up from deeper regions, can deposit a small fraction of their energy
in a gain layer behind the shock [8]. Although the efficiency is much lower than
imagined by Colgate and White — typically only a few per cent of the neutrino
energy are left in the stellar medium — the neutrino heating mechanism can
yield the energy of about 1051 erg for the explosion of a massive star like, e.g.,
Supernova 1987A.

Although Wilson’s simulations showed the principle viability of this mecha-
nism and theoretical investigations enlightened the underlying physics [4,5,6,7],
later simulations revealed a strong sensitivity to the details of the post-bounce
evolution of the collapsed stellar core [65,3,32,44]. General relativity, the nuclear
equation of state and corresponding properties of the nascent neutron star, the
treatment of the neutrino transport and neutrino-matter interactions, and the
structure of the collapsing star have important influence. In particular, later
models of Mayle and Wilson [63,64] produced sufficiently powerful explosions
only in case of enhanced neutrino emission from the nascent neutron star due to
neutron-finger instabilities. Whether such mixing processes take place, however,
is not clear to date [15]. Alternatively, the hot neutron star might develop Ledoux
convection [22,17] due to negative gradients of lepton number and/or entropy,
a possibility which is suggested by the structure obtained in state-of-the-art
spherical models for the neutrino-cooling phase of proto-neutron stars [49,47]
and by two-dimensional hydrodynamical simulations [37], but is not generally
accepted [43].

Supernova 1987A has provided us with evidence for large-scale mixing pro-
cesses, which involve the layers in the near vicinity of the neutron star where ra-
dioactive nuclei are produced. Indeed, multi-dimensional simulations have shown
the existence of hydrodynamical instabilities in the neutrino-heated region al-
ready during the first second of the explosion [28,46,31,32,20]. This convective
overturn behind the shock was recognized to allow for an explosion even when
spherical models do not explode. Also, it enhances the explosion energy and sets
the timescale until the shock gains momentum. But still it is not clear whether
it is sufficient and crucial for the neutrino-driven mechanism to be at work, or
whether it is just an unavoidable side-effect [44]. The existence of these mixing
processes, however, definitely means that the events leading to an explosion,
the energetics of the explosion, the nucleosynthesis of radioactive elements dur-



Supernova Explosions and Neutron Star Formation 335

ing the first second, and the composition and distribution of the ejecta can be
understood quantitatively only by multi-dimensional simulations.

Unfortunately, the 24 neutrinos from Supernova 1987A, which were recorded
in the underground experiments of Kamioka, IMB and Baksan [1], did not pro-
vide enough statistical information to draw conclusions on the events which
instigated the explosion of the star. Although these neutrinos confirm the basic
picture of stellar core collapse and neutron star formation, they are not suitable
to support the neutrino-driven mechanism. Therefore the latter may be consid-
ered as the currently most favorable explanation for the explosion, but empirical
evidence cannot be put forward and numerical models do not draw a clear and
unambiguous picture.

It cannot be excluded that the energy for supernova explosions of massive
stars is provided by some other mechanism than neutrino heating, for example
by magneto-hydrodynamical processes. However, we know that neutrinos with
the expected characteristics are emitted from collapsed stellar cores, we know
that these neutrinos carry away the gravitational binding energy of the nascent
neutron star, we know that neutrino heating must occur behind the stalled shock
some time after core bounce, we know that analytic studies and numerical sim-
ulations find explosions for a suitable combination of conditions, we know that
the energy transfer by neutrinos can be strong enough to account for “normal”
explosions with a canonical energy of ∼ 1051 erg, and we know that the timescale
of shock rejuvenation by neutrino heating determines the mass cut such that ac-
cretion of the collapsed stellar core and later fallback lead to neutron star masses
and supernova nucleosynthesis in rough agreement with observations [23,25,66].
Of course, the discrepant results of numerical simulations are unsatisfactory,
and major problems are nagging: Why do the supposedly best and most ad-
vanced spherical models not produce explosions? Can one trust current multi-
dimensional simulations with their greatly simplified and approximate treatment
of neutrino transport? Is rotation in neutrino-driven explosions sufficient to ex-
plain the observed large asphericities and anisotropies in many supernovae [24]?
What is the reason for the kicks by which pulsars are accelerated to average
velocities of several hundred km/s presumably during the supernova explosion?
What powers hyperenergetic supernovae, which seem to release up to 50 times
more kinetic energy than ordinary explosions of massive stars [30]?

This paper gives an overview over the major lines of research on the stan-
dard explosion scenario of massive stars, and on neutron star formation, where
progress has been achieved during the past few years or will be coming up in the
near future. In Section 2 the physics of neutrino-driven explosions will be dis-
cussed in some detail, and an analytic toy model will be described which allows
one a deeper understanding of the requirements of neutrino-driven explosions.
In Section 3 the current status of supernova modeling in spherical symmetry will
be outlined, with particular focus on results with neutrino transport by solving
the Boltzmann equation. In Section 4 the relevance of convective overturn in
the neutrino-heated layer will be discussed. New results of two-dimensional sim-
ulations will be presented, which take into account the nucleosynthesis during
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Fig. 1. Sketch of the post-collapse stellar core during the neutrino heating and shock
revival phase. Rν is the neutrinosphere radius, Rns the protoneutron star radius, Rg

the gain radius outside of which net neutrino heating exceeds neutrino cooling, and
Rs is the shock radius. The shock expansion is impeded by mass infall at a rate Ṁ ,
but supported by convective energy transport from the region of strongest neutrino
heating into the post-shock layer. Convection inside the nascent neutron star raises the
neutrino luminosities.

the explosion and follow the shock from the moment of its formation until it
breaks out of the surface of the star. In Section 5, two-dimensional hydrody-
namical models of the neutrino-cooling phase of newly formed neutron stars will
be described. The effects of rotation and of a suppression of neutrino-nucleon
interactions by nucleon correlations in the nuclear medium will be addressed.
Section 6 will contain a summary and conclusions.

2 The Explosion Mechanism

The physics of neutrino-driven explosions is discussed, first on the level of basic
considerations, then with the help of an analytic toy model, which allows one to
study the competing effects that determine the destiny of the stalled supernova
shock.

2.1 Neutrino Heating

Figure 1 displays a sketch of the neutrino cooling and heating regions outside the
proto-neutron star at the center. The main processes of neutrino energy deposi-
tion are the charged-current reactions νe + n→ p+ e− and ν̄e + p→ n+ e+ [8].
With the neutrino luminosity, L, the average squared neutrino energy, 〈ε2〉, and
the mean value of the cosine of the angle θν of the direction of neutrino propa-
gation relative to the radial direction, 〈μ〉 = 〈cos θν〉, being defined as moments
of the neutrino phase space distribution function f(r, t, μ, ε) by integration over
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energies ε and angles μ according to

L = 4πr2 2πc
(hc)3

∫ +1

−1
dμ
∫ ∞

0
dε ε3μf , (1)

〈ε2〉 =
∫ +1

−1
dμ
∫ ∞

0
dε ε5f ·

{∫ +1

−1
dμ
∫ ∞

0
dε ε3f

}−1

, (2)

〈μ〉 =
∫ +1

−1
dμ
∫ ∞

0
dε ε3μf ·

{∫ +1

−1
dμ
∫ ∞

0
dε ε3f

}−1

, (3)

the heating rate per nucleon (N) is approximately given by

Q+
ν ≈ 110 ·

(
Lνe,52〈ε2νe,15〉

r2
7 〈μ〉νe

Yn +
Lν̄e,52〈ε2ν̄e,15〉

r2
7 〈μ〉ν̄e

Yp

) [
MeV
s ·N

]

≈ 55 ·
Lν,52〈ε2ν,15〉

r2
7 f

[
MeV
s ·N

]
, (4)

where Yn and Yp are the number fractions of free neutrons and protons (number
densities divided by baryon number density), respectively. In the second equation
Yn+Yp ≈ 1, and equal luminosities and spectra for νe and ν̄e were assumed. Lν,52
denotes the total luminosity of νe plus ν̄e in 1052 erg/s, r7 the radial position
in 107 cm, 〈ε2ν,15〉 is measured in units of 15 MeV, and f = 〈μ〉ν is very small
in the opaque regime where the neutrinos are isotropic, adopts a value of about
0.25 around the neutrinosphere, and approaches unity for radially streaming
neutrinos very far out. Note that the “flux factors” 〈μ〉ν determines the neutrino
energy density at a radius r according to εν(r) = Lν/(4πr2c〈μ〉ν).

Using this energy deposition rate, neglecting energy losses due to the re-
emission of neutrinos, and assuming that the gravitational binding energy of
a nucleon in the neutron star potential is (roughly) balanced by the sum of
internal and nuclear recombination energies after accretion of the infalling matter
through the shock, one can estimate (very approximately) the explosion energy
to be of the order

Eexp ∼ 1051 ·
Lν,52〈ε2ν,15〉

R2
g,7 f

(
ΔM

0.1M�

)(
Δt

0.1 s

)
− Egb + Enuc [erg] . (5)

Here ΔM is the heated mass, Δt the typical heating timescale, Egb the (net)
total gravitational binding energy of the overlying, outward accelerated stellar
layers, and Enuc the additional energy from explosive nucleosynthesis, which is a
significant contribution of a few 1050 erg only for progenitors with main sequence
masses above 20M�, and which roughly compensates Egb

1.

1 The latter statement is supported by the following argument (S. Woosley, personal
communication): Material with a specific gravitational binding energy Φgrav which
is equal to or larger than the nuclear energy release per gram in Si burning, enuc ∼
1018 erg/g, is located interior to the radius where the temperatures can become high
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It is not easy to infer from Eq. (5) the dependence of the explosion energy
on the neutrino luminosity. On the one hand,

Eexp ∝ Q+
ν V Δt ∝ Lν〈ε2ν〉

R2
g

ΔMΔt ∝ LνΔτ Δt , (6)

where V is the heated volume between gain radius and shock, and Δτ the optical
depth of the heating layer. On the other hand,

Δτ ∝ 〈ε2ν〉Rg ρg ∝ 〈ε2ν〉RgT
3
g ∝ L1/2

ν 〈ε2ν〉3/2 . (7)

Here ρ ∝ T 3 was assumed for the relation between density and temperature
in the heating layer [7], and Q+

ν (Rg) = Q−
ν (Rg) was used at the gain radius,

where neutrino heating is balanced by neutrino cooling. The energy loss rate
Q−

ν by neutrinos produced in capture reactions of nondegenerate electrons and
positrons on nucleons, scales with T 6. Combining Eqs. (6) and (7) yields

Eexp ∝ L3/2
ν 〈ε2ν〉3/2Δt ∝ L9/4

ν Δt , (8)

when 〈ε2ν〉 ∝ T 2
ν ∝ L

1/2
ν is used for black-body like emission.

If the expansion velocity were simply proportional to E
1/2
exp , in which case

the time Δt for the shock to reach a given radius would be Δt ∝ E
−1/2
exp , then

Eexp ∝ L
3/2
ν [7]. However, when shock expansion sets in, most of the energy is

internal energy, but not kinetic energy, making the relation Δt ∝ E
−1/2
exp very

questionable. The actual variation of Δt with the inverse of the neutrino lumi-
nosity can be steeper.

2.2 Requirements for Neutrino-Driven Explosions

In order to get explosions by the delayed neutrino-heating mechanism, certain
conditions need to be fulfilled. Expansion of the postshock region requires suf-
ficiently large pressure gradients near the radius Rcut of the developing mass
cut. If one neglects self-gravity of the gas in this region and assumes the den-
sity profile to be a power law, ρ(r) ∝ r−n (which is well justified according to
numerical simulations which yield a power law index of n ≈ 3 [5]), one gets
P (r) ∝ r−n−1 for the pressure in an atmosphere near hydrostatic equilibrium.
Outward acceleration is therefore maintained as long as the following condition
for the “critical” internal energy density ε holds:

εc

GMρ/r

∣∣∣∣
Rcut

>
1

(n + 1)(γ − 1)
∼= 3

4
, (9)

enough (T >∼ 5×109 K) for explosive nucleosynthesis of 56Ni. From Φgrav = GM/r >∼
1018 erg/g one estimates a radius of r <∼ 2 × 108 cm, and from 4

3πr3aT 4 ∼ 1051 erg
with T >∼ 5 × 109 K one finds r <∼ 4 × 108 cm. This means that the energy release
from explosive nucleosynthesis is easily able to account for the gravitational binding
energy of the burning material.
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where use was made of the relation P = (γ − 1)ε. The numerical value was ob-
tained for γ = 4/3 and n = 3. This condition can be converted into a criterion for
the entropy per baryon, s. Using the thermodynamical relation for the entropy
density normalized to the baryon density nb, s = (ε+P )/(nbT )−∑i ηiYi where
ηi (i = n, p, e−, e+) are the particle chemical potentials divided by the temper-
ature, and assuming completely disintegrated nuclei behind the shock so that
the number fractions of free protons and neutrons are Yp = Ye and Yn = 1− Ye,
respectively, one gets

sc(Rcut) >∼ 14
M1

r7 T

∣∣∣∣
Rcut

− ln
(

1.27 · 10−3 ρ9 Yn

T 3/2

)∣∣∣∣
Rcut

[kB/N ] . (10)

In this approximate expression a term with a factor Ye was dropped (its absolute
value being usually less than 0.5 in the considered region), nucleons were assumed
to obey Boltzmann statistics, and T is measured in MeV, M1 in units of M�,
ρ9 in 109 g/cm3, and r7 in 107 cm. Inserting typical numbers (T ≈ 1.5 MeV,
Yn ≈ 0.3, Rcut ≈ 1.5 · 107 cm), one finds s > 15 kB/N , which gives an estimate
of the entropy in the heating region when expansion is going to take place.

Since the entropy and energy density in the postshock later are raised by
neutrino energy deposition, the conditions of Eqs. (9) and (10) imply require-
ments on the neutrino emission of the proto-neutron star. These can be derived
by the following considerations. A stalled shock is converted into a moving one
only, when the neutrino heating is strong enough to increase the pressure behind
the shock by a sufficient amount. From the Rankine-Hugoniot relations at the
shock, a criterion can be deduced for the heating rate per unit mass, qν , behind
the shock, which leads to a positive postshock velocity (u1 > 0) [12]:

qν >
2β − 1

β3(β − 1)(γ − 1)
|u0|3
ηRs

. (11)

Here β is the ratio of postshock to preshock density, β = ρ1/ρ0, γ the adiabatic
index of the gas (assumed to be the same in front and behind the shock), and
η defines the fraction of the shock radius Rs where net heating by neutrino
processes occurs: η = (Rs − Rg)/Rs. u0 is the preshock velocity, which is a
fraction α (analytical and numerical calculations show that typically α ≈ 1/

√
2)

of the free fall velocity: u0 = α
√

2GM/r. Assuming a strong shock, one has
β = (γ + 1)/(γ − 1), which becomes β = 7 for γ = 4/3. With typical numbers,
Rs = 100 km, M = M1 = 1M�, and η ≈ 0.4, one derives for the critical
luminosity of νe plus ν̄e:

Lν,52〈ε2ν,15〉 > 4.4
M

3/2
1

R
1/2
s,7

. (12)

Since this discussion was very approximate, e.g., the reemission of neutrinos was
ignored and properties depending on the structure of the collapsed stellar core
were absorbed into free parameters, the analysis cannot yield a quantitatively
meaningful value for the threshold luminosity. However, the existence of a lower
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Fig. 2. Left: Phase diagram for successful explosion or continued stellar collapse in
dependence upon the rate at which gas falls into the shock and upon the νe plus ν̄e

luminosity of the nascent neutron star. The mass of the neutron star was assumed to
be 1.25 M�. Right: Shock positions as functions of time for different values of the νe

plus ν̄e luminosity of the neutron star (according to the labels) and fixed value of the
rate at which gas falls into the shock (marked by the dashed line in the left plot). For
neutrino luminosities above the critical value (where the dashed line crosses the solid
line in the left plot) explosions can occur.

bound on the neutrino luminosity as found in numerical simulations [31,32], is
confirmed. Above this threshold value, neutrino heating of the gas behind the
shock is strong enough to drive an expansion of the gain layer.

2.3 Analytic Toy Model

The discussion in the previous section was overly simplified. The behavior of the
stagnant shock does not only depend on the neutrino heating in the gain region,
but is also influenced by the energy loss and the settling of the cooling layer,
and by the mass infall from the collapsing star star ahead of the shock. Only
hydrodynamical simulations can determine the shock evolution in response to
these different, partly competing effects. Analytic discussions, however, can help
one understanding the significance of different effects and thus can supplement
more detailed, but less transparent supercomputer calculations.

The conditions in the region of neutrino heating and the details of the heat-
ing process were analysed by Bethe and Wilson [8] and Bethe [4,5,6,7]. Burrows
and Goshy [18] considered the post-bounce accretion phase of the supernova
shock as a quasi steady-state situation, and thus replaced the time-dependent
partial differential equations of hydrodynamics by a set of ordinary differential
equations to determine the radial position of the standing shock by an eigenvalue
analysis. While this approach captures an interesting aspect of the problem, it
has serious weaknesses. The accretion flow between the shock and the neutron
star does not need to be stationary, but neutrino-heated matter may stay in the
gain region, or gas will pile up on the forming neutron star when neutrinos are
unable to remove energy quickly enough for the gas to settle. In particular, when
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the shock accelerates outward, the transition from accretion to outflow cannot
be described as a stationary situation.

Since the gas falling into the stalled shock is strongly decelerated and the
postshock velocities are smaller than the local sound speed, the structure of the
collapsed stellar core is rather simple and can be well described by hydrostatic
equilibrium. This allows for an approximate treatment, which is complementary
to the approach taken by Burrows and Goshy [18]: Integrating the stellar struc-
ture over radius leads to conservation laws for the total mass and energy in the
gain layer. The time-dependent radius and velocity of the shock can then be
obtained as solutions of an initial value problem, which reflects the fact that the
destiny of the shock depends on the initial conditions and is controlled by the
cumulative effects of neutrino energy deposition and mass accumulation in the
gain layer.

Such an analysis also demonstrates the existence of a threshold value for
the neutrino luminosity from the neutron star, which is needed to drive shock
expansion. This threshold luminosity depends on the rate, Ṁ , of mass infall to
the shock, on the neutron star mass and radius, and to some degree also on the
shock stagnation radius. Taking into account only the main dependence on Ṁ ,
it can roughly be written as

Lν,crit(Ṁ) ≈ L0 − L1

(
Ṁ

M�/s

)
, (13)

with L0 ≈ 5×1052 erg s−1 and L1 ≈ 3×1052 erg s−1 for the conditions of Fig. 2.
The neutrino heating in the gain layer is not the only important factor that

determines the shock propagation. Energy loss by neutrino emission in the cool-
ing layer has a considerable influence, because it regulates the settling of the
matter that is accreted by the nascent neutron star, and therefore the advection
of gas through the heating layer. If cooling is inefficient, gas piles up on the
neutron star and pushes the shock farther out. If cooling is very efficient, the gas
contracts quickly and more gas is dragged downward through the gain radius,
extracting mass and energy from the gain layer and thus weakening the support
for the shock. This also means that the infall velocity behind the shock increases
and the timescale for the gas to stay in the gain layer is reduced. Therefore
the efficiency of neutrino energy deposition drops. Such an effect is harmful for
shock expansion. It can be diminished by higher νe and ν̄e luminosities from the
neutrinosphere, which lead to an enhancement of neutrino absorption relative to
neutrino emission. On the other hand, muon and tau neutrino and antineutrino
production in the accretion layer of the neutron star has a desastrous conse-
quence for the shock, because it is a sink of energy that leaves the star without
any significant positive effect above the neutrinosphere, where only νe and ν̄e

can be absorbed by free nucleons.
These different, competing processes combined explain the slope of the criti-

cal line in the left plot of Fig. 2 and in Eq. (13). Shock expansion and acceleration
are easier for high mass infall rates, Ṁ , into the shock and for high νe and ν̄e

luminosities from the nascent neutron star. These luminosities need to be larger
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when Ṁ is small. It must be pointed out here, however, that this dependence is
a consequence of the fact that the temperature in the cooling layer is considered
as a parameter of the discussion. It is assumed to be equal to the neutrinospheric
temperature and thus to be mainly determined by the interaction with the neu-
trino flux from the core of the neutron star, but not by the mass infall and the
dynamics in the accretion layer.

Emission of muon and taun neutrinos and antineutrinos from the cooling
region is not included in the results displayed in Fig. 2. It would move the critical
line to appreciably higher values of the νe plus ν̄e luminosity of the collapsed
core, which is given along the ordinate.

Neutrino heating is stronger close to the gain radius than right behind the
shock. Using an isentropic profile in the gain layer, the evaluation, however,
implies very efficient energy transport, e.g., by convective motions in the gain
layer. This enhances the postshock pressure and reduces the loss of energy from
the gain layer, which is associated with the inward advection of neutrino-heated
gas.

Solutions of the toy model for varied parameters show that the energy in
the gain layer and therefore the explosion energy of the supernova is limited to
some 1051 erg. The reason for this is the following. Neutrino energy deposition
proceeds by νe and ν̄e absorption on nucleons. The heated gas expands away
from the region of strongest heating as soon as the nucleons have absorbed an
energy roughly of the order of the gravitational potential energy, with only a
small time lag because of the inertia of the shock, which is confined by the ram
pressure of the collapsing stellar material. This does not allow the net energy of
the heated gas to become very large. Typically it is of the order of ∼ 5 MeV per
nucleon. With a mass in the gain layer of several 0.01M� up to ∼ 0.1M�, the
total energy does therefore not exceed a few 1051 erg.

Figure 3 clearly shows this saturation of the explosion energy, which occurs
when the gain layer and the shock are expanding. In this sense, neutrino-driven
explosions are “self-regulated”: Further energy deposition is quenched as the
baryons move out of the region of high neutrino fluxes.

The heating rate increases with the neutrino luminosity and the deposited
energy is higher for a larger mass in the gain layer (Eq. 5). However, the ex-
pansion timescale during which the gas is exposed to high neutrino fluxes, drops
when the heating is stronger. Therefore the explosion energy is extremely sen-
sitive to the neutrino luminosity only around the threshold value for getting an
explosion.

Neutrino-driven explosions are likely to be “delayed” (up to a few 100 ms
after core bounce) rather than “late” (after a few seconds). The density between
the gain radius and the shock decreases with time because the proto-neutron
star contracts and the gas infall to the shock drops rapidly as time goes on.
Therefore the mass ΔM in the heated region shrinks and the shock must recede
to a small radius around or even below 100 km, not favoring a later explosion.

Fulfilling the “explosion criterion” of Fig. 2 once is no guarantee for a suc-
cessful explosion. The push from the heating region has to be maintained until
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Fig. 3. Explosion energies E>0(t) for spherically symmetric models (“1D”, dashed
lines) and two-dimensional (“2D”) supernova models (solid lines) [31,32]. The latter
take into account convective overturn between the supernova shock and the neutrino-
heating region. The curves display the evolution as a function of time after shock
formation for different values of the νe luminosity (labeled in units of 1052 erg/s). The
latter was used as a free parameter at the surface of the nascent neutron star and was
roughly equal to the ν̄e luminosity. Below the smallest given luminosities, the considered
15 M� star does not explode in 1D and acquires too low an expansion energy in 2D to
unbind the whole stellar mantle and envelope.

the material that carries the bulk of the energy is moving ballistically, and a
fair fraction of this energy has been converted from internal to kinetic energy.
Otherwise, if energy losses by neutrino emission or PdV on the contracting
proto-neutron star start to dominate the energy input by neutrino absorption,
the pressure-supported expansion can break down again and re-collapse can oc-
cur. However, once shock expansion sets in, the conditions for further neutrino
heating improve rapidly, and the optical depth of the growing gain layer to neu-
trinos increases. Provided the neutrino luminosity does not drop, an explosion
becomes unavoidable. This requirement favors a high core neutrino luminosity
over accretion luminosity to power neutrino-driven explosions.

3 Status of Spherical Simulations

Recently, a major shortcoming of previous supernova models has been removed,
at least in spherical models. Instead of treating multi-frequency neutrino trans-
port by a flux-limited diffusion approximation [63,64,48,9], the Boltzmann equa-
tion can now be solved in connection with hydrodynamical simulations, either by
direct discretisation [45] or by a variable Eddington factor technique [53], even
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Fig. 4. Trajectories of mass shells in the core of a collapsing 15 M� star from a Newto-
nian simulation with Boltzmann neutrino transport [52,53]. The shells are equidistantly
spaced in steps of 0.02 M�. The boundaries of the iron core, silicon shell and neon-
magnesium shell are indicated by bold lines. The fat, solid curve rising up at 0.21
seconds after the start of the simulation marks the position of the supernova shock,
the dashed line denotes the gain radius. In this spherically symmetric simulation, muon
and tau neutrinos and antineutrinos were neglected, which favors an explosion. Never-
theless, the shock recedes after having expanded to more than 300 km.

in the general relativistic case [41]. For the first time, the numerical deficiencies
of the models are therefore smaller than the uncertainties of the input physics.

The more accurate treatment of the transport, in particular in the semi-
transparent neutrino-decoupling region around and outside of the neutrinosphere
up to the shock, favors higher energy transfer to the stellar gas in the cooling
layer and in the gain layer [42,68]. Nevertheless, the results of these simulations
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Fig. 5. Inhomogeneous distribution of neutrino-heated, hot gas which rises in
mushroom-like bubbles, and cooler gas that is accreted through the supernova shock
(bumpy discontinuity at about 3000 km) and falls in long, narrows streams towards the
newly formed neutron star at the center. The figure shows a snapshot of the entropy
at 300ms after core bounce and shock formation for a two-dimensional simulation of
a 15 M� star. The star was exploded by the neutrino-heating mechanism by chosing
a suitable value of the neutrino luminosity from the nascent neutron star, which was
replaced by an inner boundary condition [39,40]. The white line encompasses the region
where radioactive nickel has been formed by nuclear burning in the shock-heated Si
layer.

are disappointing. In spherical symmetry, the models do not explode, neither in
the Newtonian (Fig. 4), nor in the general relativistic case.

These current models, however, neglect convective effects inside the nascent
neutron star as well as in the neutrino-heated region. Since convection has been
recognized to be very important, such simulations do not treat the full super-
nova problem and do not really allow for conclusions about the viability of
the neutrino-driven mechanism. Multi-dimensional simulations with Boltzmann
neutrino transport are called for.

4 Hydrodynamic Instabilities during the Explosion

During the explosion of a supernova, hydrodynamic instabilities and convective
processes can occur on different scales in space and time. Convective motions
inside the nascent neutron star can speed up the energy transport and raise the
neutrino luminosities during a period of seconds (Section 5). In the neutrino-
heated region, convective overturn during the first second of the explosion car-
ries hot matter towards the shock front and brings cool gas into the region of
strongest neutrino heating near the gain radius. This has important influence on
the start of the explosion and the nucleosynthesis of radioactive elements. When
the shock propagates through the mantle and envelope of the disrupted star,
Rayleigh-Taylor instabilities destroy the onion-shell structure of the progenitor
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and mix radioactive material with high velocities from near the neutron star
into the helium and even hydrogen shells of the star. In this section, the early
postshock convection and its interaction with the hydrodynamic instabilities at
the composition interfaces of the progenitor star will be discussed.

4.1 Convective Overturn in the Neutrino-Heated Region

Convective instabilities in the layers adjacent to the nascent neutron star are a
natural consequence of the negative entropy gradient built up by the weakening
of the prompt shock prior to its stagnation and by neutrino heating [4]. This was
verified by two- and three-dimensional simulations [27,46,28,20,28,57,31,32,44].
Figure 5 shows the entropy distribution between proto-neutron star and super-
nova shock about 300 ms after core bounce for one such calculation [39,40].
Although there is general agreement about the existence and the growth of hy-
drodynamic instabilities in the layer between the shock at Rs and the radius
of maximum neutrino heating (which is just outside the gain radius, Rg), the
strength of the convective overturn and its importance for the success of the
neutrino-heating mechanism are still a matter of debate.

Two-dimensional simulations with a spectrally averaged, flux-limited dif-
fusion treatment of neutrino transport [28,20], or with the neutrino luminosity
being given as a free parameter at the inner boundary, which replaces the neutron
star at the center [31,32], found successful explosions in cases where spherically
symmetric models fail (Fig. 3). According to these simulations, the convective
overturn in the neutrino-heated region has the following effects on the shock
propagation. Heated matter from the region close to the gain radius rises out-
ward and at the same time is exchanged with cool gas flowing down from the
shock. Since the production reactions of neutrinos (e± capture on nucleons and
thermal processes) are very temperature sensitive, the expansion and cooling
of rising plasma reduces the energy loss by the reemission of neutrinos. More-
over, the net energy deposition by neutrinos is enhanced as more cool material
is exposed to the large neutrino fluxes near the gain radius (the radial dilution
of the fluxes goes roughly as 1/r2). Since hot matter moves towards the shock,
the pressure behind the shock increases, an effect which pushes the shock farther
out. This leads to a growth of the gain region and therefore also of the net energy
transfer from neutrinos to the stellar gas, favoring an explosion.

The consequences of postshock convection are clearly visible from the re-
sults plotted in Fig. 3, where the explosion energy E>0 as a function of time is
shown for spherically symmetric and two-dimensional calculations of the same
post-collapse model, but with different assumed neutrino luminosities from the
proto-neutron star [31,32]. E>0 is defined to include the sum of internal, kinetic,
and gravitational energy for all zones where this sum is positive (the gravitational
binding energies of stellar mantle and envelope and additional energy release
from nuclear burning are not taken into account). For one-dimensional simula-
tions with νe luminosities (and very similar ν̄e luminosities) below 1.9 ·1052 erg/s
explosions could not be obtained when the proto-neutron star was assumed
static, and the threshold value of the luminosity was 2.2 · 1052 erg/s when the
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Fig. 6. Order scheme for the post-collapse dynamics in dependence of Lν〈ε2ν〉, which
determines the strength of the neutrino heating outside of the neutrinosphere. The
destiny of the star — accretion or explosion — can be understood by the relative size
of the timescales of neutrino heating, τht, matter advection through the gain region
onto the nascent neutron star, τadv, and growth of convective instabilities, τcv.

neutron star was contracting. The supporting effects of convective overturn be-
tween the gain radius and the shock lead to explosions even below the critical
value in spherical symmetry, and to a faster development of the explosion.

Simulations with a better description of the neutrino transport by a multi-
energy-group treatment of the neutrino diffusion [44], confirm the existence of
such convective processes in the region of neutrino heating, but the associated
effects are not strong enough to revive the stalled prompt supernova shock,
although the outward motion of the shock is enhanced.

Fully self-consistent, multi-dimensional calculations, however, have not yet
been done with a state-of-the-art Boltzmann neutrino transport, which has re-
cently become applicable for spherically symmetric models (see Section 3). The
current multi-dimensional simulations therefore demonstrate only the presence
and potential importance of convection, but final conclusions on the viability of
the neutrino-heating mechanism in the presence of postshock convection are not
possible at the moment. A quantitatively meaningful description of the shock
revival phase, however, requires an accurate description of the transport as well
as a multi-dimensional approach.
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4.2 Is Neutrino-Driven Convection Crucial for an Explosion?

The role of convective overturn for the development of an explosion becomes
clearer by considering the three timescales of neutrino heating, τht, advection
of accreted matter through the gain layer into the cooling region and down to
the neutron star (compare Fig. 1), τad, and the timescale for the growth of
convective instabilities, τcv. The evolution of the shock — accretion or explosion
— is determined by the relative size of these three timescales. Straightforward
considerations show that they are of the same order and the destiny of the star
is therefore a result of a tight competition between the different processes.

The heating timescale is estimated from the initial entropy per nucleon, si,
the critical entropy sc (Eq. (10)), and the heating rate per nucleon (Eq. (4)) as

τht ≈
sc − si

Q+
ν /(kBT )

≈ 45 ms · sc − si

5kB/N

R2
g,7(T/2MeV) f

(Lν/4 · 1052erg/s)〈ε2ν,15〉
, (14)

for Lν being the total luminosity of νe plus ν̄e. With a postshock velocity of
u1 = u0/β ≈ (γ − 1)

√
GM/Rs/(γ + 1) the advection timescale is

τad ≈
Rs −Rg

u1
≈ 55 ms ·

(
1− Rg

Rs

)
R

3/2
s,200√
M1

, (15)

where the gain radius can be determined as

Rg,7 ∼= 0.9T 3/2
s R

3/2
s,200 f

1/4
(

Lν

4 · 1052erg/s

)−1/4

〈ε2ν,15〉−1/4 (16)

from the requirement that the heating rate, Eq. (4), is equal to the cooling rate
per nucleon, Q−

ν ≈ 2.3T 6 MeV/(N · s), when Rs,200 is the shock radius in units
of 200 km, Yn + Yp ≈ 1 is assumed, and use is made of the power-law behavior
of the temperature according to T (r) ≈ Ts(Rs/r), with Ts being the postshock
temperature in MeV. The growth timescale of convective instabilities in the
neutrino-heated region depends on the gradients of entropy and lepton number
through the growth rate of Ledoux convection, σL:

τcv ≈
ln (100)

σL
≈ 4.6

{
g

ρ

[(
∂ρ

∂s

)
Ye,P

ds
dr

+
(

∂ρ

∂Ye

)
s,P

dYe

dr

]}−1/2

∼ 20 ms ·
(
Rs

Rg
− 1
)1/2 R

3/2
g,7√
M1

. (17)

The numerical value was obtained with the gravitational acceleration g =
GM/R2

g, (∂ρ/∂s)P ∼ −ρ/s, and ds/dr ∼ −1
2s/(Rs − Rg). The term propor-

tional to the gradient of Ye was assumed to be negligible. τcv of Eq. (17) is
sensitive to the detailed conditions between gain radius (close to which s devel-
ops a maximum) and the shock. The neutrino heating timescale is shorter for
larger values of the neutrino luminosity Lν and mean squared neutrino energy
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〈ε2ν〉. All three timescales, τht, τad and τcv, decrease roughly in the same way
with smaller gain radius or shock position.

In order to be a crucial help for the explosion, convective overturn in the
neutrino-heated region must develop on a sufficiently short timescale. This hap-
pens only in a rather narrow window of Lν〈ε2ν〉 where τcv < τad ∼ τht (Fig. 6).
For smaller neutrino luminosities the heating is too weak to create a sufficiently
large entropy maximum, and rapid convective motions cannot develop before
the accreted gas is advected through the gain radius (τad < τcv < τht). In this
case neither with nor without convective processes energetic explosions can oc-
cur (Fig. 3). For larger neutrino luminosities the neutrino heating is so strong,
and the heating timescale correspondingly short (τht < τcv ∼ τad), that expan-
sion of the postshock layers has set in before the convective activity reaches a
significant level. In this case convective overturn is an unavoidable side-effect
of the neutrino heating behind the shock, but is not necessary for starting the
explosion.

The parametric studies performed by Janka and Müller [31,32] support this
discussion, which helps one understanding the seemingly discrepant results ob-
tained by different groups.

4.3 Nucleosynthesis and Mixing Instabilities

Besides increasing the efficiency of neutrino energy deposition, convection in the
postshock layer has an important influence also on the nucleosynthesis and dis-
tribution of radioactive elements. In particular, nickel is not produced by silicon
burning in a spherical shell, but is concentrated in dense clumps and pockets
between rising bubbles of neutrino-heated matter in the expanding postshock
layer (Fig. 5).

The further evolution of the shock until it breaks out of the stellar sur-
face hours later, was recently followed by using adaptive mesh refinement tech-
niques [39,40]. These allow for a dynamic adjustment of the computational grid
such that small structures can be treated with high resolution, while the whole
computation covers a huge volume.

A few seconds after its formation, the shock has passed the silicon and
oxygen layers and propagates through the helium shell of the star. The initial
anisotropies have been compressed into a narrow shell, from which new instabil-
ities start to grow. Rayleigh-Taylor mushrooms penetrate into the helium layer
and carry O, Si and Ni farther out, while He sinks in. Within minutes, long, dense
filaments reach far into the helium shell, associated with them fast-moving knots
that contain dominant contributions of different heavy elements from the deeper
layers (Fig. 7). Nickel, silicon and oxygen move through helium with velocities
up to several 1000 km/s (Fig. 8).

These simulations show that the hydrodynamic instabilities which occur in
the first second of the explosion, do not only play a role during the phases of
shock rejuvenation and nickel formation. They act also as seed perturbations
for the instabilities at the composition interfaces of the progenitor, which finally
destroy the onion-shell structure of the pre-collapse star.
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Fig. 7. Snapshot from a two-dimensional simulation of the explosion of a blue su-
pergiant star with 15 solar masses at a time 1170 seconds after the stellar core has
collapsed to a neutron star [40]. In the left half of the figure the density is shown in a
region with a radius of about 2.2 million kilometers, in the right half three color im-
ages of the mass densities of radioactive nickel (red and pink), silicon (green, light blue,
whitish) and oxygen (deep blue) are superposed. One can see that the ejecta of the
explosion are inhomogeneous and anisotropic, and the original onion-shell structure of
the exploding star was shredded. Nickel is concentrated in dense, fast-moving clumps
along the extended filaments seen in the left plot.
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Fig. 8. Left: Distribution of 56Ni vs. radial velocity at t = 50 s and t = 300 s after
core bounce. Right: Initial composition of the star exterior to the iron core (top) and
composition 300 s after core bounce (bottom). C, O, Si, and the newly synthesized Ni
have been mixed beyond the inner half of the helium core, and He has been carried
inward.

The results are in good agreement with observations of mixing and
anisotropies in many Type Ib,c supernovae. In case of Supernova 1987A, a Type
II explosion of a massive star which has retained its hydrogen envelope, the ob-
served high nickel velocities in the hydrogen envelope cannot be explained by
the models. The nickel clumps are strongly decelerated at the He/H interface,
where they enter a dense helium “wall” which builds up after the passage of the
shock. The dissipation of the kinetic energy of the clumps does not allow nickel
to penetrate into the hydrogen layer with high velocities.

5 Neutron Star Formation

Convective energy transport inside the newly formed neutron star can increase
the neutrino luminosities considerably [17]. This can be crucial for energizing
the stalled supernova shock [63,64].

Convection in the neutron star can be driven by gradients of the entropy
and/or proton (electron lepton number) fraction in the nuclear medium [22]. The
type of instability which grows most rapidly, e.g., doubly diffusive neutron-finger
convection [63,64] or Ledoux convection [17] or quasi-Ledoux convection [35,37],
may be a matter of the properties of the nuclear equation of state, which deter-
mines the magnitudes and signs of the thermodynamic derivatives [13]. It is also
sensitive to the gradients that develop, and thus may depend on the details of
the treatment of neutrino transport in the dense interior of the star.

Convection below the neutrinosphere seems to be disfavored during the very
early post-bounce evolution by the currently most elaborate supernova mod-
els [14,15,43], but can develop deeper inside the nascent neutron star on a longer
timescale (>∼ 100 ms after bounce) and can encompass the whole star within
seconds [17,37,35].

Negative lepton number and entropy gradients have been seen in several one-
dimensional (spherically symmetric) simulations of the neutrino-cooling phase



352 H.-Th. Janka, K. Kifonidis, and M. Rampp

Fig. 9. Profiles of the lepton fraction Ylep = nlep/nb (left) and of the entropy per
nucleon, s, (right) as functions of enclosed (baryonic) mass for different times in a
one-dimensional simulation of the neutrino cooling of a ∼ 1.1 M� proto-neutron star.
Negative gradients of lepton number and entropy suggest potentially convectively un-
stable regions. Time is (roughly) measured from core bounce.

of nascent neutron stars [16,17,36,58] (see also Fig. 9) and have suggested the
existence of regions which are potentially unstable against Ledoux convection.
Recent calculations [49] with improved neutrino opacities of the nuclear medium,
which were described consistently with the employed equation of state, confirm
principal aspects of previous simulations, in particular the existence of Ledoux-
unstable layers in the neutron star.

5.1 Convection inside the Nascent Neutron Star

Two-dimensional, hydrodynamical simulations were performed for the neutrino-
cooling phase of a∼ 1.1M� proto-neutron star that formed in the core collapse of
a 15M� star [37,35]. The models followed the evolution for a period of more than
1.2 seconds. They demonstrate the development of convection and its importance
for the cooling and deleptonization of the neutron star.

The simulations were carried out with the hydrodynamics code Prometheus.
A general relativistic 1D gravitational potential with Newtonian corrections for
asphericities was used, Φ ≡ ΦGR

1D +(ΦN
2D−ΦN

1D), and a flux-limited (equilibrium)
neutrino diffusion scheme was applied for each angular bin separately (“11

2D”).
The simulations showed that convectively unstable surface-near regions (i.e.,

around the neutrinosphere and below an initial density of about 1012 g/cm3)
exist only for a short period of a few ten milliseconds after bounce, in agreement
with the findings by other groups [14,15,43]. Due to a flat entropy profile and
a negative lepton number gradient, convection, however, also starts in a layer
deeper inside the star, between an enclosed mass of 0.7M� and 0.9M�, at
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Fig. 10. Same as Fig. 9, but for a two-dimensional, hydrodynamical simulation which
allowed to follow the development of convection. The plots show angularly averaged
quantities in the ∼ 1.1 M� proto-neutron star. In regions with convective activity the
gradients of Ylep and s are flattened. The convective layer encompasses an increasingly
larger part of the star.

Fig. 11. Absolute values of the convective velocity in the proto-neutron star for two
instants (about 0.5 s (left) and 1 s (right) after core bounce) as obtained in a two-
dimensional, hydrodynamical simulation. The arrows indicate the direction of the ve-
locity field. Note that the neutron star has contracted from a radius of about 60 km
initially to little more than 20 km. The growth of the convective region can be seen.
Typical velocities of the convective motions are several 108 cm/s.

densities above several 1012 g/cm3. From there the convective region digs into
the star and reaches the center after about one second (Figs. 10, 11, and 13).
Convective velocities as high as 5·108 cm/s were found (about 10–20% of the local
sound speed), corresponding to kinetic energies of up to 1–2 · 1050 erg (Fig. 11).
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Fig. 12. Convective “luminosity” (solid line) and neutrino luminosities (dashed: Lνe +
Lν̄e , dash-dotted: Lνμ +Lν̄μ +Lντ +Lν̄τ , dotted: total) as functions of enclosed baryonic
mass for the two-dimensional proto-neutron star simulation about 500 ms after core
bounce.

Because of these high velocities and rather flat entropy and composition profiles
in the star (Fig. 10), the overshooting region is large (see Fig. 13). The same is
true for undershooting during the first ∼ 100 ms after bounce. Sound waves and
perturbations are generated in the layers above and interior to the convection
zone.

The coherence lengths of convective structures are of the order of 20–40
degrees (in 2D!) (see Fig. 11) and coherence times are around 10 ms, which
corresponds to only one or two overturns. The convective pattern is therefore
very time-dependent and nonstationary. Convective motions lead to considerable
variations of the composition. The lepton fraction (and thus the abundance of
protons) shows relative fluctuations of several 10%. The entropy differences in
rising and sinking convective bubbles are much smaller, only a few per cent,
while temperature and density fluctuations are typically less than one per cent.

The energy transport in the neutron star is dominated by neutrino diffusion
near the center, whereas convective transport plays the major role in a thick
intermediate layer where the convective activity is strongest. Radiative transport
takes over again when the neutrino mean free path becomes large near the surface
of the star (Fig. 12). But even in the convective layer the convective energy flux
is only a few times larger than the diffusive flux. This means that neutrino
diffusion is not negligibly small in the convective region. This fact has important
consequences for the driving mechanism of the convection.
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Fig. 13. Left: Convectively unstable region (corresponding to negative values of the
displayed quantity ω2

QL = −(g/ρ)CQL with CQL from Eq. (19)) about 500 ms af-
ter bounce according to the Quasi-Ledoux criterion which includes non-adiabatic and
lepton-transport effects by neutrino diffusion. Right: Layer of Quasi-Ledoux convective
instability (blue) as function of time for a two-dimensional simulation. The angle-
averaged criterion C1D

QL(r) ≡ minθ (CQL(r, θ)) > 0 with CQL(r, θ) from Eq. (19) is
plotted. The dotted area is outside of the computed star, green denotes stable layers
where over- and undershooting causes lateral velocities with angularly averaged abso-
lute values of 〈|vθ|〉 > 107 cm s−1, and white are convectively “quiet” regions of the
star.

5.2 Driving Force of Convection

The convective activity in the neutron star cannot be explained by, and consid-
ered as ideal Ledoux convection. Applying the Ledoux criterion for local insta-
bility,

CL(r, θ) =
ρ

g
σ2

L =
(
∂ρ

∂s

)
Ylep,P

ds
dr

+
(

∂ρ

∂Ylep

)
s,P

dYlep

dr
> 0 , (18)

with σL from Eq. (17) and Ye replaced by the total lepton fraction Ylep in the
neutrino-opaque interior of the neutron star (for reasons of simplicity, ∇s was
replaced by ds/dr and ∇Ylep by dYlep/dr), one finds that the convecting re-
gion should actually be stable, despite of slightly negative entropy and lepton
number gradients. In fact, below a critical value of the lepton fraction (e.g.,
Ylep,c = 0.148 for ρ = 1013 g/cm3 and T = 10.7 MeV) the thermodynamical
derivative (∂ρ/∂Ylep)s,P changes sign and becomes positive because of nuclear
and Coulomb forces in the high-density equation of state [13]. Therefore nega-
tive lepton number gradients should stabilize against convection in this regime.
However, an idealized assumption of Ledoux convection is not fulfilled in the
situations considered here: Because of neutrino diffusion, energy exchange and,
in particular, lepton number exchange between convective elements and their
surroundings are not negligible. Taking the neutrino transport effects on Ylep
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Fig. 14. Absolute value of the gas velocity in a convecting, rotating proto-neutron
star about 750ms after bounce (left). Convection is suppressed near the rotation axis
(vertical) and develops strongly only near the equatorial plane where a flat distribution
of the specific angular momentum jz (right) has formed.

into account in a modified “Quasi-Ledoux criterion” [35],

CQL(r, θ) ≡
(
∂ρ

∂s

)
〈Ylep〉,〈P 〉

d〈s〉
dr

+
(

∂ρ

∂Ylep

)
〈s〉,〈P 〉

(
d〈Ylep〉

dr
− βlep

dYlep

dr

)
> 0 ,

(19)
one determines instability exactly where the two-dimensional simulation reveals
convective activity. In Eq. (19) the quantities 〈Ylep〉 and 〈s〉 mean averages over
the polar angles θ, and local gradients have to be distinguished from gradients
of angle-averaged quantities which describe the stellar background. The term
βlep(dYlep/dr) with the empirically determined value βlep ≈ 1 accounts for the
change of the lepton concentration along the path of a rising fluid element due
to neutrino diffusion. Figure 13 shows that about half a second after core bounce
strong, driving forces for convection occur in a narrow ring between 9 and 10 km,
where a steep negative gradient of the lepton fraction exists (see Fig. 10). Farther
out, convective instability is detected only in finger-like structures of rising, high-
Ylep gas.

5.3 Accretion and Rotation

In other two-dimensional models, post-bounce mass accretion and rotation of
the forming neutron star were included. Accretion causes stronger convection
with larger velocities in a more extended region. This can be explained by the
steepening of lepton number and entropy gradients and the increase of the grav-
itational potential energy when additional matter is added onto the neutron
star.

Rotation has very interesting consequences, e.g., leads to a suppression of
convective motions near the rotation axis because of a stabilizing stratification of
the specific angular momentum (see Fig. 14), an effect which can be understood
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by applying the (first) Solberg-Høiland criterion for instabilities in rotating, self-
gravitating bodies [60]:

CSH(r, θ) ≡ 1
x3

dj2
z

dx
+

a

ρ

[(
∂ρ

∂s

)
Ylep,P

∇s +
(

∂ρ

∂Ylep

)
s,P

∇Ylep

]
< 0 . (20)

Here, jz is the specific angular momentum of a fluid element, which is conserved
for axially symmetric configurations, x is the distance from the rotation axis, and
in case of rotational equilibrium a is the sum of gravitational and centrifugal
accelerations, a = ∇P/ρ. Changes of the lepton number in rising or sinking
convective elements due to neutrino diffusion were neglected in Eq. (20). Ledoux
(or Quasi-Ledoux) convection can only develop where the first term is not too
positive. In Fig. 14 fully developed convective motion is therefore constrained to
a zone of nearly constant jz close to the equatorial plane. At higher latitude the
convective velocities are much smaller, and narrow, elongated convective cells
aligned with cylindrical regions of jz = const parallel to the rotation axis are
visible.

The rotation pattern displayed in Fig. 14 is highly differential with a rotation
period of 7.3 ms at x = 22 km and of 1.6 ms at x = 0.6 km. It has self-consistently
developed under the influence of neutrino transport and convection when the
neutron star had contracted from an initial radius of about 60 km (with a surface
rotation period of 55 ms at the equator and a rotation period of ∼ 5 ms near the
center) to a final radius of approximately 22 km. Due to the differential nature of
the rotation, the ratio of rotational kinetic energy to the gravitational potential
energy of the star is only 0.78% in the beginning and a few per cent at the end
after about 1 s of evolution.

5.4 Consequences of Proto-Neutron Star Convection

Convection inside the proto-neutron star can raise the neutrino luminosities
within a few hundred ms after core bounce (Fig. 15). In the considered collapsed
core of a 15M� star, Lνe

and Lν̄e
increase by up to 50% and the mean neutrino

energies by about 15% at times later than 200–300 ms post bounce. This favors
neutrino-driven explosions on timescales of a few hundred milliseconds after
shock formation. Also, the deleptonization of the nascent neutron star is strongly
accelerated, raising the νe luminosities relative to the ν̄e luminosities during this
time. This helps to increase the electron fraction Ye in the neutrino-heated ejecta
and might solve the overproduction problem of N = 50 nuclei during the early
epochs of the explosion [37]. In case of rotation, the effects of convection on
the neutrino emission depend on the direction. Since strong convection occurs
only close to the equatorial plane, the neutrino fluxes are convectively enhanced
there, while they are essentially unchanged near the poles.

Anisotropic mass motions due to convection in the neutron star lead to
gravitational wave emission and anisotropic radiation of neutrinos. The angular
variations of the neutrino flux found in the 2D simulations are of the order of
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Fig. 15. Left: Luminosities Lν(t) and mean energies 〈εν〉(t) of νe and ν̄e for a 1.1 M�
proto-neutron star without (“1D”; dotted) and with convection (“2D”; solid). Right:
Angular variations of the neutrino flux at different times for the 2D simulation.

5–10% (Fig. 15). With the typical size of the convective cells and the short co-
herence times of the convective structures, the global anisotropy of the neutrino
emission from the cooling proto-neutron star is very small. This implies a kick
velocity of the nascent neutron star due to anisotropic neutrino emission of only
∼ 10 km/s in a 2D simulation (Fig. 16). Because the convective elements are
likely to become even smaller in 3D, kick velocities of 300 km/s or even more,
as observed for many pulsars, can definitely not be explained by convectively
perturbed neutrino emission.

5.5 Neutrino Opacities in Nuclear Matter
and Neutron Star Convection

Another important issue of interest are the neutrino opacities in the dense and
hot nuclear medium of the nascent neutron star. In current supernova models, the
description of neutrino-nucleon interactions is incomplete because the standard
approximations assume isolated and infinitely massive nucleons [61]. Therefore
effects like the fermion phase space blocking of the nucleons, the reduction of the
effective nucleon mass by momentum-dependent nuclear interactions in the dense
plasma, and nucleon thermal motions and recoil are either neglected completely
or approximated in a more or less reliable manner [9,16]. These effects have
been recognized to be important [56,33,50,54] for calculations of the neutrino
luminosities and spectra, but still await careful inclusion in supernova codes. For
this purpose a consistent description of nuclear equation of state and neutrino-
matter interactions is desirable.

Many-body (spatial) correlations due to strong interactions [55,29,19,54,67]
and multiple-scattering effects by spin-dependent forces between nucleons (tem-
poral spin-density correlations) [51,26] are of particular interest, because they
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Fig. 16. Kick velocity of the neutron star as a function of time, caused by the
anisotropic emission of neutrinos due to convection. The two-dimensional simulation
was done with a polar grid from 0 to π.

lead to a reduction of the neutrino opacities in the newly formed neutron star
and are associated with additional modes of energy transfer between neutrinos
and the nuclear medium.

A reduction of the neutrino opacities implies larger neutrino mean free paths
and thus increases the neutrino luminosities. (Fig. 17 and Refs. [38,49,19]). The
neutrino diffusion is accelerated most strongly in the very dense core of the
nascent neutron star. Convection in the intermediate region between core and
outer layers turns out not to be suppressed, but is still the fastest mode of
energy transport. Therefore reduced neutrino opacities as well as convective
energy transport are important, but the combined effects do not appreciably
change the convectively enhanced neutrino emission (Fig. 17, right) [34].

6 Summary

Supernova explosions of massive stars are an important phenomenon for apply-
ing nuclear and particle physics, in particular neutrino physics. The processes
going on in the extremely dense and hot core of the exploding star are accessible
to direct measurements only through neutrinos or gravitational waves. Empir-
ical information about the events that cause the explosion and accompany the
formation of a neutron star, however, can also be deduced from observable char-
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Fig. 17. Left: Thermal averages of the neutrino mean free paths for νe absorption
(dotted line), νe scattering (solid line), and muon and tau neutrino scattering (dashed
line), respectively, according to the standard description of the neutrino opacities. M
is the baryonic mass enclosed by the radial coordinate R (bold solid line) of the newly
formed neutron star about 200ms after core bounce. Also shown are the factors f−1

A and
f−1
V (dash-dotted lines) which give a measure of the increase of the neutrino mean free

paths caused by a suppression of the axial-vector and vector current contributions to the
neutrino opacities due to in-medium effects [67] (Yamada, personal communication).
Right: Total neutrino luminosities, Lν , and integrated energy loss, Eν , as functions of
time for spherically symmetric models without convection (B1 and B1YO) and two-
dimensional models with convection (B2 and B2YO). Models B1 and B2 were computed
with standard neutrino opacities whereas in B1YO and B2YO in-medium suppression
of the neutrino opacities was included [67] (Yamada, personal communication).

acteristics of supernovae, for example their explosion energy or the amount and
distribution of radioactive nuclei, and from the properties of neutron stars.

Theoretical models need to establish the link between the core physics and
these observables. In the past years it has been recognized that hydrodynam-
ical instabilities and mixing processes on large scales play an important role
within the core as well as in the outer layers of the exploding star. Convection
can change the cooling of the nascent neutron star, supports the revival of the
stalled shock by neutrino heating, and destroys the onion-shell structure of the
progenitor star. Multi-dimensional calculations are therefore necessary to un-
derstand why and how supernovae explode, and to make predictions for their
observable consequences.

Spherically symmetric simulations, Newtonian and general relativistic, with
the most advanced treatment of neutrino transport by solving the Boltzmann
equation, do not produce explosions. This emphasizes the importance of convec-
tion, but may also point to physics still missing in the models. One such weakness
of current simulations is an overly simplified description of neutrino interactions
with nucleons in the nuclear medium of the neutron star. A kinematically cor-
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rect treatment of these reactions, taking into account nucleon thermal motions,
recoil and fermi blocking, needs only a technical step, but a better understand-
ing of the effects of nucleon correlations and their consistent treatment with the
equation of state requires theoretical progress.

The neutrino-heating mechanism, although the favored explanation for the
explosion, is still controversial, both because of the status of modeling and be-
cause of observations which seem hard to explain. Although significant progress
has been made, multi-dimensional simulations with an accurate and reliable han-
dling of neutrino transport and an up-to-date treatment of the input physics are
still missing, and definite conclusions can therefore not be drawn at the moment.
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Abstract. The main stages in the evolution of a neutron star, from its birth as a
proto-neutron star, to its old age as a cold, catalyzed configuration, are described. A
proto-neutron star is formed in the aftermath of a successful supernova explosion and its
evolution is dominated by neutrino diffusion. Its neutrino signal is a valuable diagnostic
of its internal structure and composition. During its transformation from a hot, lepton-
rich to a cold, catalyzed remnant, the possibility exists that it can collapse into a
black hole, which abruptly terminates neutrino emissions. The essential microphysics,
reviewed herein, that controls its evolution are the equation of state of dense matter
and its associated neutrino opacities. Several simulations of the proto-neutron star
evolution, involving different assumptions about the composition of dense matter, are
described. After its evolution into a nearly isothermal neutron star a hundred or so years
after its birth, it may be observable through its thermal emission in X-rays during its
life in the next million years. Its surface temperature will depend upon the rapidity
of neutrino emission processes in its core, which depends on the composition of dense
matter and whether or not its constituents exhibit superfluidity and superconductivity.
Observations of thermal emission offer the best hope of a determination of the radius
of a neutron star. The implications for the underlying dense matter equation of state
of an accurate radius determination are explored.

1 Introduction: The Tale

A proto-neutron star (PNS) is born in the aftermath of a successful supernova
explosion as the stellar remnant becomes gravitationally decoupled from the
expanding ejecta. Initially, the PNS is optically thick to neutrinos, that is, they
are temporarily trapped within the star. The subsequent evolution of the PNS is
dominated by ν−diffusion which first results in deleptonization and subsequently
in cooling. After a much longer time, photon emissions compete with neutrino
emissions in neutron star cooling.

In this paper, we will focus upon the essential microphysical ingredients that
govern the macrophysical evolution of neutron stars: the equation of state (EOS)
of dense matter and its associated neutrino opacity. Among the characteristics of
matter that widely vary among EOS models are their relative compressibilities
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(important in determining a neutron star’s maximum mass), symmetry energies
(important in determining the typical stellar radius and in the relative proton
fraction) and specific heats (important in determining the local temperature).
These characteristics play important roles in determining the matter’s compo-
sition, in particular the possible presence of additional components (such as
hyperons, a pion or kaon condensate, or quark matter), and also significantly
affect calculated neutrino opacities and diffusion time scales.

The evolution of a PNS proceeds through several distinct stages [1,2] and
with various outcomes, as shown schematically in Fig. 1. Immediately following
core bounce and the passage of a shock through the outer PNS’s mantle, the
star contains an unshocked, low entropy core of mass Mc � 0.7 M� in which
neutrinos are trapped (the first schematic illustration, labelled (1) in the figure).
The core is surrounded by a low density, high entropy (5 < s < 10) mantle
that is both accreting matter from the outer iron core falling through the shock
and also rapidly losing energy due to electron captures and thermal neutrino
emission. The mantle extends up to the shock, which is temporarily stationary
at a radius of about 200 km prior to an eventual explosion.

After a few seconds (stage 2), accretion becomes less important if the super-
nova is successful and the shock lifts off the stellar envelope. Extensive neutrino
losses and deleptonization will have led to a loss of lepton pressure and the col-
lapse of the mantle. If enough accretion occurs, however, the star’s mass could

Fig. 1. The main stages of evolution of a neutron star. Shading indicates approximate
relative temperatures.
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increase beyond the maximum mass capable of being supported by the hot,
lepton-rich matter. If this occurs, the remnant collapses to form a black hole
and its neutrino emission is believed to quickly cease [3].

Neutrino diffusion deleptonizes the core on time scales of 10–15 s (stage
3). The diffusion of high-energy (200–300 MeV) neutrinos from the core to the
surface where they escape as low-energy neutrinos (10–20 MeV) generates a large
amount of heat within the star (a process akin to joule heating). The core’s
entropy approximately doubles, producing temperatures in the range of 30–60
MeV, during this time, even as neutrinos continue to be prodigiously emitted
from the stars effective surface, known as the ν−sphere.

Strange matter, in the form of hyperons, a Bose condensate, or quark mat-
ter, which is suppressed to extremely large densities when neutrinos are trapped
in matter, could appear at the end of the deleptonization. The appearance of
strange matter leads to a decrease in the theoretical maximum mass that mat-
ter is capable of supporting, leading to another possibility for black hole for-
mation [4]. This would occur if the PNS’s mass, which must be less than the
maximum mass of hot, lepton-rich matter (or else a black hole would already
have formed), is greater than the maximum mass of hot, lepton-poor matter.
However, if strangeness does not appear, the theoretical maximum mass instead
increases during deleptonization and the appearance of a black hole would be
unlikely unless accretion in this stage remains significant.

The PNS is now lepton-poor, but it is still hot. While the star has zero net
neutrino number, thermally produced neutrino pairs of all flavors are abundant
and dominate the emission. Neutrino diffusion continues to cool the star, but the
average neutrino energy decreases, and the neutrino mean free path increases.
After approximately 50 seconds (stage 4), the mean free path becomes compa-
rable to the stellar radius, and star finally becomes transparent to neutrinos.
Since the threshold density for the appearance of strange matter decreases with
decreasing temperature, a delayed collapse to a black hole is still possible during
this epoch.

Neutrino observations from a galactic supernova will illuminate these stages.
The observables will constrain time scales for deleptonization and cooling and
the star’s binding energy. Dimensionally, diffusion time scales are proportional to
R2(cλ)−1, where R is the star’s radius and λ is the effective neutrino mean free
path. This generic relation illustrates how both the EOS and the composition,
which determine both R and λ, influence evolutionary time scales. The total
binding energy, which is primarily a function of stellar mass and radius (Lattimer
& Prakash [5]), should be one of the most accurately measured quantities from
neutrino observatories. Currently, Super-Kamiokande and SNO are capable of
detecting thousands of neutrinos from a galactic supernova (distance less than
10 kpc). Exciting possibilities lie ahead with many other existing and planned
new facilities [6].

Following the onset of neutrino transparency, the core continues to cool by
neutrino emission, but the star’s crust remains warm and cools less quickly. The
crust is an insulating blanket which prevents the star from coming to complete
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thermal equilibrium and keeps the surface relatively warm (T ≈ 3× 106 K) for
up to 100 years (stage 5). This timescale is primarily sensitive to the neutron
star’s radius and the thermal conductivity of the mantle [7], as can be noted from
the approximate diffusive relationship τ ∝ ΔR2/λ, where ΔR is the thickness
of the crust. If the rapid decrease in the star’s surface temperature predicted to
occur when thermal equilibrium is ultimately achieved (see Fig. 16 in Section
6), a valuable constraint on the thickness of the crust, and hence the neutron
star radius, could be obtained. The temperature of the surface after the interior
of the star becomes isothermal (stage 6) is determined by the rate of neutrino
emission in the star’s core. The magnitude of the rate is primarily determined by
the question of whether or not one or more of the so-called direct Urca processes
can occur. The basic Urca process

n→ p + e− + ν̄e; p→ n + e+ + νe (1)

operates even in degenerate matter because at finite temperature some of the
nucleons are in excited states. In addition, direct Urca process involving hyper-
ons, Bose condensates and quarks are also possible. In general, the direct Urca
rate is proportional to T 4, and is so large that the surface temperatures fall to
just a few times 105 K, which becomes very difficult to observe in X-rays ex-
cept for very nearby stars. A relatively high surface temperature, closer to 106

K, will persist, however, if an Urca process can only occur indirectly with the
participation of a spectator nucleon – the modified Urca process , which in the
case of nucleons is

n + (n, p)→ p + (n, p) + e− + ν̄e; p + (n, p)→ n + (n, p) + e+ + νe , (2)

and leads to the so-called standard cooling scenario.
However, there are two circumstances that could prevent the direct Urca

process from occurring. First, if the composition of the matter is such that the
momentum triangle involving the non-neutrino particles cannot be closed, mo-
mentum conservation disallows this process. This occurs, in the case of n, p, e,
for example, if the p and e− abundances, which must be equal, are less than
1/8 the n abundance. This would be the case if the nuclear symmetry energy
has a relatively weak density dependence. In addition, direct Urca processes in-
volving hyperons, a Bose condensate, or quarks would not occur, of course, if
they are not present. Second, direct Urca processes are suppressed if one of the
reactants becomes superfluid. In this case, when the core temperature falls be-
low the superfluid’s critical temperature, the rapid cooling is terminated. In the
case of a superfluid, the core cooling, and therefore the surface temperature, will
be intermediate between those predicted by standard and rapid cooling models.
Neutrino emission continues to dominate until neutron stars are approximately 1
million years old, at which point photon cooling from the surface begins to dom-
inate. Unless the interiors cool very rapidly, X-ray emissions from stars remain
relatively high until the photon cooling epoch.

Several neutron stars have been suggested to have observable thermal emis-
sions in X-rays. In addition, the nearby neutron star RX J185635-3754, which
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is the closest known neutron star with a distance of approximately 60 pc, has
detectable UV and optical thermal emissions as well. Such objects represent the
best chance for measuring a neutron star’s radius, especially if the redshift of
spectral lines can be determined. Just-launched or proposed X-ray satellites,
such as Chandra and XMM offer abundant prospects of observations of photon
observations of neutron stars.

The organization of this article is as follows. Section 2 contains a summary
of the basic equations of evolution for proto-neutron stars, including a discussion
of the equilibrium diffusion approximation. Section 3 details the equation of state
of dense matter, taking into account the possibility that neutrinos are trapped
in the matter. The possibilities of hyperon-rich matter, kaon condensation and
strange quark matter are also discussed here. In the event of a transition to
matter containing kaons or quarks, we also consider the possibility that matter
could be inhomogeneous with droplets of the strange matter embedded in normal
matter. Neutrino-matter interactions are considered in Section 4, which includes
discussions of the effects of composition, in-medium dispersion relations, and
correlations, in both homogeneous and inhomogeneous phases. In Section 5, we
present several simulations of the evolution of proto-neutron stars with different
assumptions about the composition of dense matter and highlighting the role of
the neutrino opacities. Focus is placed upon predicted neutrino signals and the
differences anticipated for varying assumptions about the matter’s composition.
Section 6 describes the long-term cooling epoch, with a special emphasis on the
role of direct Urca processes and superfluidity and a comparison with observa-
tions. A discussion of the possibility of detecting superfluidity, including quark
color superfluidity, is included. In Section 7, the dependence of the structure of
neutron stars on the underlying dense matter equation of state is explored. The
relation between the matter’s symmetry energy and the radii of neutron stars
is highlighted. In addition, the moments of inertia and binding energies of neu-
tron stars are discussed, and observational constraints on the mass and radius
of the Vela pulsar from these considerations are elaborated. Section 8 contains
our outlook.

2 Short-Term Neutrino Cooling: The First Minutes

The cooling of PNSs can be divided into two main regimes: the short-term,
lasting perhaps one minute, during which the potential to observe the neutrino
signal in terrestrial detectors exists, and the longer term period, lasting perhaps
one million years, in which neutrino emissions dominate the cooling but the
star is observable only through its thermal, photonic, emissions. This section
summarizes the evolution equations relevant for the short-term Kelvin-Helmholtz
phase and the estimation of its neutrino signature.

2.1 PNS Evolution Equations

The equations that govern the transport of energy and lepton number are ob-
tained from the Boltzmann equation for massless particles[1,8,9,10]. We will
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focus on the non-magnetic, spherically symmetric situation. For the PNS prob-
lem, fluid velocities are small enough so that hydrostatic equilibrium is nearly
fulfilled. Under these conditions, the neutrino transport equations in a stationary
metric

ds2 = −e2φdt2 + e2Λdr2 + r2dθ2 + r2 sin2 θ dΦ2 (3)

are:

∂(Nν/nB)
∂t

+
∂(eφ4πr2Fν)

∂a
= eφSN

nB
(4)

∂(Jν/nB)
∂t

+ Pν
∂(1/nB)

∂t
+ e−φ ∂(e2φ4πr2Hν)

∂a
= eφSE

nB
, (5)

where nB is the baryon number density and a is the enclosed baryon number
inside a sphere of radius r. The quantities Nν , Fν , and SN are the number
density, number flux and number source term, respectively, while Jν , Hν , Pν ,
and SE are the neutrino energy density, energy flux, pressure, and the energy
source term, respectively.

In the absence of accretion, the enclosed baryon number a is a convenient
Lagrangian variable. The equations to be solved split naturally into a trans-
port part, which has a strong time dependence, and a structure part, in which
evolution is much slower. Explicitly, the structure equations are

∂r

∂a
=

1
4πr2nBeΛ

,
∂m

∂a
=

ρ

nBeΛ
(6)

∂φ

∂a
=

eΛ

4πr4nB

(
m + 4πr3P

)
,

∂P

∂a
= −(ρ + P )

eΛ

4πr4nB

(
m + 4πr3P

)
. (7)

The quantities m (enclosed gravitational mass), ρ (mass-energy density), and
P (pressure) include contributions from the leptons. To obtain the equations
employed in the transport, (4) may be combined with the corresponding equation
for the electron fraction

∂Ye

∂t
= −eφSN

nB
(8)

to obtain

∂YL

∂t
+ e−φ ∂(eφ4πr2Fν)

∂a
= 0 . (9)

Similarly, (5) may be combined with the matter energy equation

dU

dt
+ P

d(1/nB)
dt

= −eφSE

nB
, (10)

where U is the specific internal energy and use of the first law of thermodynamics
yields

eφT
∂s

∂t
+ eφμν

∂YL

∂t
+ e−φ ∂e

2φ4πr2Hν

∂a
= 0 , (11)

where s is the entropy per baryon.
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2.2 The Equilibrium Diffusion Approximation

At high density and for temperatures above several MeV, the source terms in the
Boltzmann equation are sufficiently strong to ensure that neutrinos are in ther-
mal and chemical equilibrium with the ambient matter. Thus, the neutrino dis-
tribution function in these regions is both nearly Fermi-Dirac and isotropic. We
can approximate the distribution function as an expansion in terms of Legendre
polynomials to O(μ), which is known as the diffusion approximation. Explicitly,

f(ω, μ) = f0(ω) + μf1(ω) , f0 = [1 + e(
ω−μν

kT )]−1 , (12)

where f0 is the Fermi–Dirac distribution function at equilibrium (T = Tmat,
μν = μeq

ν ), with ω and μν being the neutrino energy and chemical potential,
respectively. The main goal is to obtain a relation for f1 in terms of f0. In the
diffusion approximation, one obtains [10]

f1 = −D(ω)
[
e−Λ ∂f0

∂r
− ωe−Λ ∂φ

∂r

∂f0

∂ω

]
. (13)

The explicit form of the diffusion coefficient D appearing above is given by

D(ω) =
(
j +

1
λa

+ κs
1

)−1

. (14)

The quantity j = ja + js, where ja is the emissivity and js is the scattering
contribution to the source term. The absorptivity is denoted by λa and κs

1 is the
scattering contribution to the transport opacity. Substituting

∂f0

∂r
= −

(
T
∂ην

∂r
+

ω

T

∂T

∂r

)
∂f0

∂ω
, (15)

where ην = μν/T is the neutrino degeneracy parameter, in (13), we obtain

f1 = −D(ω)e−Λ

[
T
∂η

∂r
+

ω

Teφ

∂(Teφ)
∂r

](
− ∂f0

∂ω

)
. (16)

Thus, the energy-integrated lepton and energy fluxes are

Fν = − e−Λe−φT 2

6π2

[
D3

∂(Teφ)
∂r

+ (Teφ)D2
∂η

∂r

]
Hν = − e−Λe−φT 3

6π2

[
D4

∂(Teφ)
∂r

+ (Teφ)D3
∂η

∂r

]
. (17)

The coefficients D2, D3, and D4 are related to the energy-dependent diffusion
coefficient D(ω) through

Dn =
∫ ∞

0
dx xnD(ω)f0(ω)(1− f0(ω)) , (18)
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where x = ω/T . These diffusion coefficients depend only on the microphysics of
the neutrino-matter interactions (see §4 for details). The fluxes appearing in the
above equations are for one particle species. To include all six neutrino types,
we redefine the diffusion coefficients in (17):

D2 = Dνe
2 + Dν̄e

2 , D3 = Dνe
3 −Dν̄e

3 , D4 = Dνe
4 + Dν̄e

4 + 4Dνμ

4 . (19)

2.3 Neutrino Luminosities

A fair representation of the signal in a terrestrial detector can be found from
the time dependence of the total neutrino luminosity and average neutrino en-
ergy together with an assumption of a Fermi-Dirac spectrum with zero chemical
potential. We will return to discuss the improvements necessary to obtain more
accurate information about the spectra.

The total neutrino luminosity is the time rate of change of the star’s gravi-
tational mass, and is therefore primarily a global property of the evolution. This
luminosity, due to energy conservation, must also equal

Lν = e2φ4πr2Hν (20)

at the edge of the star. This relation serves as a test of energy conservation, at
least for all times greater than about 5 ms, when the star comes into radiative
equilibrium. For times greater than about 5 ms, initial transients become quite
small and the predicted luminosities should be relatively accurate compared to
full transport simulation. Estimate of the average energy of neutrinos is made
from the temperature Tν of the matter at the neutrinosphere Rν , defined to
be the location in the star where the flux factor ξH = 0.25. However, since
the spectrum may not be Fermi-Dirac at the neutrinosphere, a diffusion scheme
cannot give a very precise value for the average energy. We use the average energy
< Eν >≈ 3Tν , where Tν is a mass average in the outermost zone. Because it is
a globally determined quantity, the luminosity Lν is necessarily more accurately
determined than either Rν or Tν .

3 The Equation of State of Neutrino Trapped Matter

The rationale for considering different possibilities for the composition of dense
matter is largely due to the fact that QCD at finite baryon density remains
unsolved. Effective QCD based models have raised intriguing possibilities con-
cerning the composition of dense matter including the presence of hyperons,
pion or kaon condensates, and quark matter (see [4] for extensive references). It
is also important to have predictions for the plain-vanilla case of nucleons alone.
The contrast can be dramatic, since additional components offer the possibility
of BH formation during the evolution of a PNS. In what follows, the symbols np
refer to matter with nucleons alone, npH to matter including hyperons, npK to
matter with nucleons and kaons, and npQ to matter with nucleons and quarks.
In all cases, leptons in beta equilibrium are included.
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3.1 Matter with Nucleons and Hyperons

The masses and radii of neutron stars depend upon the matters’ compressibility,
the composition of matter at high density, and the nuclear symmetry energy
(e.g., [4]). In the PNS problem, the finite temperature aspects of the EOS also
play an important role. During the early evolution the entropy in the central
regions is moderately high, s ∼ 1− 2 (in units of Boltzmann’s constant), which
correspond to temperatures in the range T = 20− 50 MeV. These features may
be explored by employing a finite temperature field-theoretical model in which
the interactions between baryons are mediated by the exchange of σ, ω, and ρ
mesons.1 The hadronic Lagrangian density is given by a generalization [12] of
relativistic mean field theory [13]

LH =
∑

i

Bi(−iγμ∂μ − gωiγ
μωμ − gρiγ

μbμ · t−Mi + gσiσ)Bi

− 1
4
WμνW

μν +
1
2
m2

ωωμω
μ − 1

4
BμνBμν +

1
2
m2

ρbμb
μ

+
1
2
∂μσ∂

μσ − 1
2
m2

σσ
2 − U(σ) (21)

Here, B are the Dirac spinors for baryons and t is the isospin operator. The sums
include baryons i = n, p, Λ,Σ, and Ξ. The field strength tensors for the ω and
ρ mesons are Wμν = ∂μων − ∂νωμ and Bμν = ∂μbν − ∂νbμ, respectively. The
potential U(σ) represents the self-interactions of the scalar field and is taken to
be of the form [14]

U(σ) =
1
3
bMn(gσNσ)3 +

1
4
c(gσNσ)4 . (22)

The partition function ZH for the hadronic degrees of freedom is evaluated in the
mean field approximation. The total partition function Ztotal = ZHZL, where ZL

is the standard noninteracting partition function of the leptons. Using Ztotal, the
thermodynamic quantities can be obtained in the standard way. The additional
conditions needed to obtain a solution are provided by the charge neutrality
requirement, and, when neutrinos are trapped, the set of equilibrium chemical
potential relations required by the general condition

μi = biμn − qi(μl − μν�
) . (23)

where bi is the baryon number of particle i and qi is its charge. The introduc-
tion of additional variables, the neutrino chemical potentials, requires additional
constraints, which we supply by fixing the lepton fractions, YL�, appropriate for
1 Note that the couplings in these models may be chosen to reproduce the results

of numerically more intensive microscopic potential models, such as that of Akmal
and Pandharipande [11], so that the gross features of the zero temperature thermo-
dynamics can be reproduced. Additional advantages to this approach are that the
effects of finite temperature and arbitrary proton fraction may be incorporated more
easily.
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conditions prevailing in the evolution of the PNS. In addition to models con-
taining only nucleonic degrees of freedom (GM1np & GM3np) we investigate
models that allow for the presence of hyperons (GM1npH & GM3npH). For the
determination of the various coupling constants appearing in ZH see [4].

The lepton chemical potentials influence the deleptonization epoch. For np
models a lower nuclear symmetry energy favors a larger νe fraction and has little
effect on the e− fraction at YL = 0.4. Models with hyperons lead to significantly
larger μνe

and lower μe, both of which influence the diffusion of electron neutri-
nos. The electron chemical potentials in neutrino free matter are reduced to a
greater extent by changes in composition and symmetry energy as there are no
neutrinos to compensate for changes in μ̂ = μn − μp.

3.2 Matter with a Kaon Condensate

The contents of this section are extracted from Pons et al. [15]. For the kaon
sector, we use a Lagrangian that contains the usual kinetic energy and mass
terms along with the meson interactions [18]. Kaons are coupled to the meson
fields through minimal coupling; specifically,

LK = D∗
μK

+DμK− −m∗2
K K+K− , (24)

where the vector fields are coupled via the standard form

Dμ = ∂μ + igωKωμ + igρKγμbμ · t (25)

and m∗
K = mK − 1

2gσKσ is the effective kaon mass.
In the mean field approach, the thermodynamic potential per unit volume

in the kaon sector is [15]

ΩK

V
= 1

2 (fθ)2(m∗2
K − (μ + X0)2)

+ T

∞∫
0

d3p

(2π)3
[
ln(1− e−β(ω−−μ)) + ln(1− e−β(ω++μ))

]
, (26)

where X0 = gωKω0 + gρKb0, the Bose occupation probability

fB(x) = (eβx − 1)−1, ω± =
√

p2 + m∗2

K ± X0, f = 93 MeV is the pion decay
constant and the condensate amplitude, θ, can be found by extremization of
the partition function. This yields the solution θ = 0 (no condensate) or, if a
condensate exists, the equation

m∗
K = μK + X0 (27)

where μK is the kaon chemical potential. In beta-stable stellar matter the con-
ditions of charge neutrality∑

B

qBnB − ne − nK = 0 (28)
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and chemical equilibrium

μi = biμn − qi(μl − μν�
) (29)

μK = μn − μp (30)

are also fulfilled.
The kaon condensate is assumed to appear by forming a mixed phase with

the baryons satisfying Gibbs’ rules for phase equilibrium [19]. Matter in this
mixed phase is in mechanical, thermal and chemical equilibrium, so that

pI = pII , T I = T II , μI
i = μII

i , (31)

where the superscripts I and II denote the nucleon and kaon condensate phases,
respectively. The conditions of global charge neutrality and baryon number con-
servation are imposed through the relations

χqI + (1− χ)qII = 0
χnI

B + (1− χ)nII
B = nB , (32)

where χ denotes the volume fraction of nucleonic phase, q the charge density,
and nB the baryon density. We ignore the fact that the phase with the smallest
volume fraction forms finite-size droplets [16,17]; in general, this would tend to
decrease the extent of the mixed phase region. Further general consequences of
imposing Gibbs’ rules in a multicomponent system are that the pressure varies
continuously with density in the mixed phase and that the charge densities must
have opposite signs in the two phases to satisfy global charge neutrality. We note,
however, that not all choices of nucleon-nucleon and kaon-nucleon interactions
permit the Gibbs’ rules to be satisfied (for an example of such an exception, see
[15]). The models chosen in this work do allow the Gibbs’ rules to be fulfilled at
zero and finite temperatures and in the presence of trapped neutrinos.

The nucleon-meson couplings are determined by adjusting them to repro-
duce the properties of equilibrium nucleonic matter at T = 0. We use the nu-
merical values used by [14], i.e., equilibrium density n0 = 0.153 fm−3, equi-
librium energy per particle of symmetric nuclear E/A = −16.3 MeV, effec-
tive mass M∗ = 0.78M , compression modulus K0 = 240 MeV, and sym-
metry energy asym = 32.5 MeV. These values yield the coupling constants
gσ/mσ = 3.1507 fm, gω/mω = 2.1954 fm, gρ/mρ = 2.1888, b = 0.008659,
and c = −0.002421.

The kaon-meson couplings gσK and gωK are related to the magnitude of
the kaon optical potential UK at the saturation density n0 of isospin symmetric
nuclear matter:

UK(n0) = −gσKσ(n0)− gωKω0(n0). (33)

Fits to kaonic atom data have yielded values in the range −(50 − 200) MeV
[20,21,22,23,24]. We use gωK = gωN/3 and gρK = gρN/2 on the basis of simple
quark and isospin counting. Given the uncertainty in the magnitude of |UK |,
consequences for several values of |UK | were explored in [15]. Moderate values
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of |UK | generally produce a second order phase transition and, therefore, lead
to moderate effects on the gross properties of stellar structure. Values in excess
of 100 MeV were found necessary for a first order phase transition to occur; in
this case kaon condensation occurs at a relatively low density with an extended
mixed phase region, which leads to more pronounced effects on the structure due
to a significant softening of the EOS.

The phase boundaries of the different phases are displayed in Fig. 2 in a
YL–nB plane for an optical potential UK of –100 MeV (left) and –120 MeV
(right), respectively. The nucleonic phase, the pure kaon matter phase, and the
mixed phase are labelled I, II, and III, respectively. Solid lines mark the phase
transition at zero temperature and dashed lines mark the phase transition at an
entropy per baryon of s = 1. Note that finite entropy effects are small and do
not affect significantly the phase transition density. The dash-dotted line shows
the electron fraction Ye as a function of density in cold, catalyzed matter (for
which YL = Ye), which is the final evolutionary state. The region to the left
of this line corresponds to negative neutrino chemical potentials and cannot be
reached during normal evolutions. The solid and dashed lines, which separate
the pure phases from the mixed phase, vary roughly linearly with the lepton
fraction. Also notice the large, and nearly constant, densities of the boundary
between the mixed phase III and the pure kaon phase II. These densities, for
the cases shown, lie above the central densities of the maximum mass stars, so
that region II does not generally exist in proto-neutron stars (see [15]). The
effect of increasing the lepton number is to reduce the size of the mixed phase
(which in fact shrinks to become a second order phase transition for YL > 0.4

Fig. 2. Phase boundaries between pure nucleonic matter (I), pure kaon condensed
matter (II) and a mixed phase (III) in the YL–nB plane for UK = −100 MeV (left
panel) and UK = −120 MeV (right panel). The solid line corresponds to s = 0 and the
dashed line to s = 1. The dashed-dotted line shows the baryon density as a function of
the lepton fraction for s = 0, neutrino-free (YL = Ye) matter
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and UK = −100 MeV) and to shift the critical density to higher densities. A
similar effect is produced by decreasing the magnitude of the optical potential.

3.3 Matter with Quarks

The discussion in this section follows the work of Steiner, Prakash & Lattimer
[25]. The thermodynamic potential of the quark phase is Ω = ΩFG +ΩInt, where

ΩFG

V
= 2NcT

∑
i=u,d,s

∫
d3p

(2π)3
[
ln (1− fi) + ln (1− f̄i)

]
(34)

denotes the Fermi gas contribution arising from quarks. We consider three fla-
vors, i = u, d, s and three colors, Nc = 3 of quarks. The distribution functions
of fermions and anti-fermions are fi = [1 + exp(β(Ei − μi))]−1 and
f̄i = [1 + exp(β(Ei +μi))]−1, where Ei and μi are the single particle energy and
chemical potential, respectively, of quark species i. To explore the sensitivity
of the quark model, we contrast the results of the MIT bag and the Nambu
Jona-Lasinio (henceforth NJL) models for ΩInt.

In the MIT bag model, the Fermi gas contribution is calculated using cur-
rent, as opposed to dynamical, quark masses. We will restrict ourselves to the
simplest bag model and keep only the constant cavity pressure term. The results
are qualitatively similar to what is obtained by including perturbative correc-
tions, if the bag constant B is slightly altered [26].

Several features of the Lagrangian of Quantum Chromo-Dynamics (QCD),
including the spontaneous breakdown of chiral symmetry, are exhibited by the
Nambu Jona-Lasinio (NJL) model, which shares many symmetries with QCD.
In its commonly used form, the NJL Lagrangian reads

L = q̄(i∂/− m̂0)q + G
8∑

k=0

[ (q̄λkq)2 + (q̄iγ5λkq)2 ]

−K [ detf (q̄(1 + γ5)q) + detf (q̄(1− γ5)q) ] . (35)

The determinant operates over flavor space, m̂0 is the 3 × 3 diagonal current
quark mass matrix, λk represents the 8 generators of SU(3), and λ0 is pro-
portional to the identity matrix. The four-fermion interactions stem from the
original formulation of this model [27], while the flavor mixing, determinental
interaction is added to break UA(1) symmetry [28]. Since the coupling constants
G and K are dimensionful, the quantum theory is non-renormalizable. Therefore,
an ultraviolet cutoff Λ is imposed, and results are considered meaningful only
if the quark Fermi momenta are well below this cutoff. The coupling constants
G and K, the strange quark mass ms,0, and the three-momentum ultraviolet
cutoff parameter Λ, are fixed by fitting the experimental values of fπ, mπ, mK

and mη′ . We use the values of [29], namely Λ = 602.3 MeV, GΛ2 = 1.835,
KΛ5 = 12.36, and m0,s = 140.7 MeV, obtained using m0,u = m0,d = 5.5 MeV.
The subscript “0” denotes current quark masses. Results of the gross properties
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of PNSs obtained by the alternative parameter sets of [30] and [31] are similar
to the results quoted below.

In the mean field approximation at finite temperature and at finite baryon
density, the thermodynamic potential due to interactions among quarks is given
by [31]:

ΩInt

V
= −2Nc

∑
i=u,d,s

∫
d3p

(2π3

(√
m2

i + p2 −
√

m2
0,i + p2

)
+ 2G〈q̄iqi〉2 − 4K〈q̄uqu〉〈q̄dqd〉〈q̄sqs〉 . (36)

In both (34) and (36) for the NJL model, the quark masses are dynamically gen-
erated as solutions of the gap equation obtained by requiring that the potential
be stationary with respect to variations in the quark condensate 〈q̄iqi〉:

mi = m0,i − 4G〈q̄iqi〉+ 2K 〈q̄jqj〉〈q̄kqk〉 , (37)

(qi, qj , qk) representing any permutation of (u, d, s). The quark condensate 〈q̄iqi〉
and the quark number density ni = 〈q†

i qi〉 are given by:

〈q̄iqi〉 = −2Nc

∫
d3p

(2π)3
mi

Ei

[
1− fi − f̄i

]
ni = 〈q†

i qi〉 = 2Nc

∫
d3p

(2π)3
[
fi − f̄i

]
. (38)

A comparison between the MIT bag and NJL models is facilitated by defin-
ing an effective bag pressure in the NJL model to be [32] Beff = Ωint/V − B0
with B0V = Ωint|nu=nd=ns=0 a constant value which makes the vacuum en-
ergy density zero. In this way, the thermodynamic potential can be expressed as
Ω = BeffV +ΩFG which is to be compared to the MIT bag result Ω = BV +ΩFG.
Note, however, that ΩFG in the NJL model is calculated using the dynamical
quark masses from (37).

The temperature as a function of baryon density for fixed entropy and
net lepton concentration is presented in Fig. 3, which compares the cases
(s = 1, YLe = 0.4) and (s = 2, Yνe = 0) both including and ignoring quarks.
The temperature for a multicomponent system in a pure phase can be analyzed
with the relation for degenerate Fermi particles

T =
s

π2

⎛⎝∑i pFi

√
p2

Fi
+ (m∗

i )
2∑

i p
3
Fi

⎞⎠−1

, (39)

where m∗
i and pFi are the effective mass and the Fermi momentum of component

i, respectively. This formula is quite accurate since the hadronic and quark Fermi
energies are large compared to the temperature. The introduction of hyperons
or quarks lowers the Fermi energies of the nucleons and simultaneously increases
the specific heat of the matter, simply because there are more components. In the
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Fig. 3. Temperature versus density in units of n0 for two PNS evolutionary snapshots.
The upper (lower) panel displays results for the NJL (MIT bag) Lagrangian. The
parameters ζ = ξ = 0 in the Müller-Serot (MS) hadronic Lagrangian [33] are chosen.
Results are compared for matter containing only nucleons (np), nucleons plus hyperons
(npH), nucleons plus quarks (npQ) and nucleons, hyperons and quarks (npHQ). Bold
curves indicate the mixed phase region

case of quarks, a further increase, which is just as significant, occurs due to the
fact that quarks are rather more relativistic than hardens. The combined effects
for quarks are so large that, in the case M∗

0 = 0.6M shown in Fig. 3, an actual
reduction of temperature with increasing density occurs along an adiabatic. The
effect is not necessarily as dramatic for other choices of M∗

0 , but nevertheless
indicates that the temperature will be smaller in a PNS containing quarks than
in stars without quarks. The large reduction in temperature might also influence
neutrino opacities, which are generally proportional to T 2. However, the presence
of droplet-like structures in the mixed phase, not considered here, will modify
the specific heat. In addition, these structures may dominate the opacity in
the mixed phase [34]. However, a PNS simulation is necessary to consistently
evaluate the thermal evolution, since the smaller pressure of quark-containing
matter would tend to increase the star’s density and would oppose this effect.

This last point is highlighted in Fig. 4 which shows phase diagrams for
the mixed phase in the baryon density-neutrino fraction plane. The upper and
lower boundaries of the mixed phase region are displayed as bold lines, while the
central densities of the maximum mass configurations are shown as light lines.
In no case, for either quark model and whether or not hyperons are included,
are pure quark stars possible. The high-density phase boundaries are always well
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Fig. 4. The phase diagram of the quark-hadronic transition in the baryon number
density - neutrino concentration plane for three representative snapshots during the
evolution of a proto-neutron star. The left (right) panels are for the NJL (MIT bag)
quark EOS, and hyperons are (are not) included in the bottom (top) panels. The
parameters ζ = ξ = 0 in the Muller-Serot (MS) hadronic Lagrangian are chosen. The
lower- and upper-density boundaries of the mixed phase are indicated by bold curves.
The central densities of maximum mass configurations are shown by thin curves

above the central densities. While in the optimum case, in which the parameters
of both the hadronic and quark EOSs are fine-tuned, it is possible for a pure
quark core to form if B < 150 MeV fm−3, the maximum mass decreases below
1.44 M� if B < 145 MeV fm−3. This narrow window, which further decreases or
disappears completely if the hadronic EOS is altered, suggests that pure quark
configurations may be unlikely.

3.4 Inhomogeneous Phases

It is widely believed that some type of phase transition will occur in nuclear
matter at high densities. For example, a transition to unconfined quark matter
should exist at sufficiently high density, and at lower densities, a first-order
transition to a Bose condensate phase might exist. Such phase transitions are
expected to soften the equation of state, leading to changes in the mass-radius
relation and lowering the maximum mass. Phase transitions can also influence
transport and weak interaction rates in matter.

Glendenning has shown that, due to the existence of two conserved charges
(baryon number and charge) instead of just one, first order phase transitions can
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lead to a large mixed phase region in the neutron star interior [35]. The mixed
phase consists of high baryon density, negatively charged, matter coexisting with
lower density, positively charged, baryonic matter. The situation is entirely anal-
ogous to the well-known situation involving the mixed phase consisting of nuclei
and a surrounding nucleonic vapor that occurs below nuclear saturation density
[36]. The occurrence of a mixed phase, as opposed to a Maxwell construction,
results in a wider transition in which bulk thermodynamic properties such as
pressure vary less rapidly but are softer over a wider density range. In addi-
tion, the propagation of neutrinos whose wavelength is greater than the typical
droplet size and less than the inter-droplet spacing will be greatly affected by the
heterogeneity of the mixed phase, as a consequence of the coherent scattering of
neutrinos from the matter in the droplet. The thermodynamics and the effect on
neutron star structure of two situations have been studied in some detail: first
order kaon condensation [18,37,38] and the quark-hadronic transition [39,40].

4 Neutrino-Matter Interaction Rates

One of the important microphysical inputs in PNS simulations is the neutrino
opacity at supra-nuclear density [1,41,42,43,44,45]. Although it was realized
over a decade ago that the effects due to degeneracy and strong interactions
significantly alter the neutrino mean free paths, it is only recently that detailed
calculations have become available [34,46,47,48,49,50,51,52]. The scattering and
absorption reactions that contribute to the neutrino opacity are

νe + B → e− + B′ , ν̄e + B → e+ + B′ , (40)
νX + B → νX + B′ , νX + e− → νX + e− , (41)

where the scattering reactions are common to all neutrino species and the dom-
inant source of opacity for the electron neutrinos is due to the charged reaction.
The weak interaction rates in hot and dense matter are modified due to many
in-medium effects. The most important of these are:

(1) Composition: The neutrino mean free paths depend sensitively on the compo-
sition which is sensitive to the nature of strong interactions. First, the different
degeneracies of the different Fermions determines the single-pair response due to
Pauli blocking. Second, neutrinos couple differently to different baryonic species;
consequently, the net rates will depend on the individual concentrations.
(2) In-medium dispersion relations: At high density, the single-particle spectra
are significantly modified from their noninteracting forms due to effects of strong
interactions. Interacting matter features smaller effective baryon masses and en-
ergy shifts relative to non-interacting matter.
(3) Correlations: Repulsive particle-hole interactions and Coulomb interactions
generally result in a screened dielectric response and also lead to collective ex-
citations in matter. These effects may be calculated using the Random Phase
Approximation (RPA), in which ring diagrams are summed to all orders. Model
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calculations [46,48,50,53,54,55,56,57,58] indicate that at high density the neu-
trino cross sections are suppressed relative to the case in which these effects
are ignored. In addition, these correlations enhance the average energy transfer
in neutrino-nucleon collisions. Improvements in determining the many-body dy-
namic form factor and assessing the role of particle-particle interactions in dense
matter at finite temperature are necessary before the full effects of many-body
correlations may be ascertained.

The relative importance of the various effects described above on neutrino
transport is only beginning to be studied systematically. As a first step, we
will focus on effects due to modifications (1) through (3) above. To see how
this is accomplished, we start with a general expression for the differential cross
section [59,60]

1
V

d3σ

d2Ω3dE3
= − G2

F

128π2

E3

E1

[
1− exp

(−q0 − (μ2 − μ4)
T

)]−1

× (1− f3(E3)) Im (LαβΠR
αβ) , (42)

where the incoming neutrino energy is E1 and the outgoing electron energy is
E3. The factor [1 − exp((−q0 − μ2 + μ4)/T )]−1 maintains detailed balance, for
particles labeled ‘2’ and ‘4’ which are in thermal equilibrium at temperature T
and in chemical equilibrium with chemical potentials μ2 and μ4, respectively.
The final state blocking of the outgoing lepton is accounted for by the Pauli
blocking factor (1− f3(E3)). The lepton tensor Lαβ is given by

Lαβ = 8[2kαkβ + (k · q)gαβ − (kαqβ + qαkβ)∓ iεαβμνkμqν ] (43)

The target particle retarded polarization tensor is

ImΠR
αβ = tanh

(
q0 + (μ2 − μ4)

2T

)
Im Παβ , (44)

where Παβ is the time ordered or causal polarization and is given by

Παβ = −i
∫

d4p

(2π)4
Tr [T (G2(p)JαG4(p + q)Jβ)] . (45)

Above, kμ is the incoming neutrino four-momentum and qμ is the four-
momentum transfer. In writing the lepton tensor, we have neglected the elec-
tron mass term, since typical electron energies are of the order of a few hundred
MeV. The Green’s functions Gi(p) (the index i labels particle species) describe
the propagation of baryons at finite density and temperature. The current op-
erator Jμ is γμ for the vector current and γμγ5 for the axial current. Effects of
strong and electromagnetic correlations may be calculated by utilizing the RPA
polarization tensor

ΠRPA = Π + ΠRPADΠ , (46)

where D denotes the interaction matrix, in (42) (see [50] for more details).
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Fig. 5. Neutrino mean free paths in matter with nucleons only (left panels). Right
panels show ratios of mean free paths in matter without and with hyperons. Abscissa
is baryon density nB (n0 is the nuclear equilibrium density). Top panels show scatter-
ing mean free paths common to all neutrino species. The bottom panels show results
for electron neutrino mean free paths where absorption reactions are included. The
neutrino content is labelled in the different panels

4.1 Neutrino Mean Free Paths

The differential cross section (42) is needed in multi-energy group neutrino trans-
port codes. However, more approximate neutrino transport algorithms (as in
Section 2) require the total cross section as a function of the neutrino energy
for the calculation of diffusion coefficients. The cross section per unit volume of
matter (or equivalently the inverse mean free path) is obtained by integrating
E3 and Ω3 in (42).

Under degenerate conditions even modest changes to the composition sig-
nificantly alter the neutrino scattering and absorption mean free paths. In Fig. 5,
the neutrino scattering and absorption mean free paths are shown for models
GM3np and GM3npH relevant to the deleptonization and cooling epochs. The
top panels show the scattering mean free paths common to all neutrino species
in neutrino free matter. The scattering mean free paths for thermal neutrinos
(Eν = πT ) is shown in the left panel for various temperatures. To study the
influence of hyperons, the ratio of the λnp/λnpH is shown in the right panels.
The presence of hyperons significantly increase the scattering cross sections, by
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Fig. 6. Left: Charged current inverse neutrino mean free paths versus temperature.
Right: Comparison of scattering mean free paths in neutrino poor matter at fixed
entropy for different EOSs in matter containing nucleons and also hyperons

a factor ∼ (2− 3). Similar results for the absorption cross sections are shown in
the lower panels for YL = 0.4. Again we notice a significant enhancement (right
panel) when hyperons appear, the factor here could be as large as 5.

During the deleptonization stage, lepton number transport is sensitive to
charged current reactions which dominate scattering reactions. At zero temper-
ature, charged current reactions ν + n↔ e+ p depend sensitively on the proton
fraction Yp [61]. Kinematic restrictions require Yp to be larger than 11 − 14%
(direct Urca threshold). At early times, a finite neutrino chemical potential fa-
vors a large Yp throughout the star, which enables these reactions to proceed
without any hindrance. Toward the late stages, however, Yp decreases with de-
creasing μν and charged current reactions may be naively expected to become
inoperative. The threshold density for the charged current reaction when μν = 0
and T = 0 depends sensitively on the density dependence of the nuclear symme-
try energy. In field-theoretical models, in which the symmetry energy is largely
given by contributions due to ρ-meson exchange, the critical density is typically
nB = 2 ∼ 3n0. However, finite temperatures favor larger Yp’s and increase the
average neutrino energy enabling the charged current reactions to proceed even
below these densities. Fig. 6 shows that this is the case even at relatively low
temperatures (T ∼ 3− 5) MeV for a baryon density nB = 0.15 fm−3. The sharp
rise with temperature, which occurs even for Yν = 0, clearly indicates that this
reaction dominates the νe opacity even during the late deleptonization era. Thus,
charged current reactions cannot be simply turned off when the neutrino chem-
ical potential becomes small enough as was done in prior PNS simulations [1].

The EOS and neutrino mean free paths are intimately related, which is best
illustrated by comparing the results shown in Fig. 5 with those shown in Fig. 6.
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Composition and the baryon effective masses influence both the neutrino mean
free paths and the matter’s specific heat. Hyperons decrease the neutrino mean
free paths at constant temperature Fig. 5. This trend is reversed at constant en-
tropy due to the significantly lower temperatures favored in npH matter. Similar
effects are apparent when we compare np models with different baryon effective
masses. At a constant temperature, the larger effective mass in model GM3np
favors larger cross sections, while at constant entropy this trend is again reversed
due to the lower temperatures favored by the larger specific heat.

The diffusion coefficients are calculated using (18) with the cross sections
discussed above. The diffusion coefficients D2, D3, and D4 are functions of nB ,
T , and Yνe

.

4.2 Inhomogeneous Phases: Effects of First Order Transitions

The thermodynamics of the two situations, first order kaon condensation [18,37]
and the quark-hadronic transition [40], has been previously considered. Reddy,
Bertsch and Prakash [34] have studied the effects of inhomogeneous phases on
ν-matter interactions. Based on simple estimates of the surface tension between
nuclear matter and the exotic phase, typical droplet sizes range from 5− 15 fm
[38], and inter-droplet spacings range up to several times larger. The propagation
of neutrinos whose wavelength is greater than the typical droplet size and less
than the inter-droplet spacing, i.e., 2 MeV∼< Eν ∼< 40 MeV, will be greatly
affected by the heterogeneity of the mixed phase, as a consequence of the coherent
scattering of neutrinos from the matter in the droplet.

The Lagrangian that describes the neutral current coupling of neutrinos to
the droplet is

LW =
GF

2
√

2
ν̄γμ(1− γ5)ν Jμ

D , (47)

where Jμ
D is the neutral current carried by the droplet and GF = 1.166 × 10−5

Gee−2 is the Fermi weak coupling constant. For non-relativistic droplets,
Jμ

D = ρW (x) δμ0 has only a time like component. Here, ρW (x) is the ex-
cess weak charge density in the droplet. The total weak charge enclosed in a
droplet of radius rd is NW =

∫ rd

0 d3x ρW (x) and the form factor is F (q) =
(1/NW )

∫ rd

0 d3x ρW (x) sin qx/qx. The differential cross section for neutrinos
scattering from an isolated droplet is then

dσ

d cos θ
=

E2
ν

16π
G2

FN
2
W (1 + cos θ)F 2(q) . (48)

In the above equation, Eν is the neutrino energy and θ is the scattering angle.
Since the droplets are massive, we consider only elastic scattering for which the
magnitude of the momentum transfer is q =

√
2Eν(1− cos θ).

We must embed the droplets into the medium to evaluate the neutrino
transport parameters. The droplet radius rd and the inter-droplet spacing are
determined by the interplay of surface and Coulomb energies. In the Winger-Seitz
approximation, the cell radius is RW = (3/4πND)1/3 where the droplet density
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is ND. Except for one aspect, we will neglect coherent scattering from more
than one droplet. If the droplets form a lattice, Brags scattering will dominate
and our description would not be valid. But for low density and a liquid phase,
interference from multiple droplets affects scattering only at long wavelengths. If
the ambient temperature is not small compared to the melting temperature, the
droplet phase will be a liquid and interference effects arising from scattering off
different droplets are small for neutrino energies Eν

>∼ (1/RW ). However, multiple
droplet scattering cannot be neglected for Eν ∼< 1/RW . The effects of other
droplets is to cancel scattering in the forward direction, because the interference
is destructive except at exactly zero degrees, where it produces a change in
the index of refraction of the medium. These effects are usually incorporated
by multiplying the differential cross section (48) by the static form factor of
the medium. The static form factor, defined in terms of the radial distribution
function of the droplets, g(r), is

S(q) = 1 + ND

∫
d3r exp iq.r (g(r)− 1) . (49)

The droplet correlations, which determine g(r), arise due to the Coulomb force
and is measured in terms of the dimensionless Coulomb number

Γ = Z2e2/(8πRW kT ).

Due to the long-range character of the Coulomb force, the role of screening and
the finite droplet size, g(r) cannot be computed analytically. We use a simple
ansatz for the radial distribution function g(r < RW ) = 0 and g(r > RW ) = 1.
For this choice, the structure factor is independent of Γ . Monte Carlo calculations
[62] of the liquid structure function of a simple one component plasma indicate
that our choice of S(q) is conservative for typical neutrino energies of interest.

The simple ansatz for g(r) is equivalent to subtracting, from the weak charge
density ρW , a uniform density which has the same total weak charge NW as the
matter in the Winger-Seine cell. Thus, effects due to S(q) may be incorporated
by replacing the form factor F (q) by

F (q)→ F̃ (q) = F (q)− 3
sin qRW − (qRW ) cos qRW

(qRW )3
. (50)

The neutrino–droplet differential cross section per unit volume then follows:

1
V

dσ

d cos θ
= ND

E2
ν

16π
G2

FN
2
W (1 + cos θ)F̃ 2(q) . (51)

Note that even for small droplet density ND, the factor N2
W acts to enhance

the droplet scattering. To quantify the importance of droplets as a source of
opacity, we compare with the standard scenario in which matter is uniform and
composed of neutrons. The dominant source of opacity is then due to scattering
from thermal fluctuations and

1
V

dσ

d cos θ
=

G2
F

8π
(
c2V (1 + cos θ) + (3− cos θ)c2A

)
E2

ν ×
3
2
nn

[
kBT

Efn

]
, (52)
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where cV and cA are respectively the vector and axial coupling constants of the
neutron, nn is the neutron number density, Efn is the neutron Fermi energy and
T is the matter temperature [63].

The transport cross sections that are employed in studying the diffusive
transport of neutrinos in the core of a neutron star are differential cross sections
weighted by the angular factor (1− cos θ). The transport mean free path λ(Eν)
for a given neutrino energy Eν is given by

1
λ(Eν)

=
σT (Eν)

V
=
∫

d cos θ (1− cos θ)
[

1
V

dσ

d cos θ

]
. (53)

Models of first order phase transitions in dense matter provide the weak
charge and form factors of the droplets and permit the evaluation of ν–droplet
scattering contributions to the opacity of the mixed phase. For the models con-
sidered, namely the first order kaon condensate and the quark-hadronic phase
transition, the neutrino mean free paths in the mixed phase are shown in the left
and right panels of Fig. 7, respectively. The results are shown for the indicated
values of the baryon density nB and temperature T where the model predicts
a mixed phase exists. The kaon droplets are characterized by radii rd ∼ 7 fm
and inter-droplet spacings RW ∼ 20 fm, and enclose a net weak vector charge
NW ∼ 700. The quark droplets are characterized by rd ∼ 5 fm and RW ∼ 11
fm, and an enclosed weak charge NW ∼ 850. For comparison, the neutrino mean
free path in uniform neutron matter at the same nb and T are also shown. It
is apparent that there is a large coherent scattering-induced reduction in the
mean free path for the typical energy Eν ∼ πT . At much lower energies, the
inter-droplet correlations tend to screen the weak charge of the droplet, and at
higher energies the coherence is attenuated by the droplet form factor.

Fig. 7. Neutrino mean free paths as a function of neutrino energy. Solid lines are for
matter in a mixed phase containing kaons (left panel) and quarks (right panel), and
dashed curves are for uniform matter.
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The large reduction in neutrino mean free path found here implies that
the mixed phase will cool significantly slower than homogeneous matter. Conse-
quently, the observable neutrino luminosity at late times might be affected as it
is driven by the transport of energy from the deep interior. The reduced mean
free path in the interior will tend to prolong the late time neutrino emission
phase.

4.3 Effects of Quark Superconductivity and Superfluidity

Recent theoretical works [64,65] suggest that quarks form Cooper pairs in
medium, a natural consequence of attractive interactions destabilizing the Fermi
surface. Although the idea of quark pairing in dense matter is not new [64,66], it
has recently seen renewed interest in the context of the phase diagram of QCD
[65]. Model calculations, mostly based on four-quark effective interactions, pre-
dict the restoration of spontaneously broken chiral symmetry through the onset
of color superconductivity at low temperatures. They predict an energy gap of
Δ ∼ 100 MeV for a typical quark chemical potential of μq ∼ 400 MeV. As in
BCS theory, the gap will weaken for T > 0, and at some critical temperature Tc

there is a (second-order) transition to a “standard” quark-gluon plasma. During
cooling from an initial temperature in excess of Tc, the formation of a gap in the
fermionic excitation spectrum in quark matter will influence various transport
properties of the system. Carter and Reddy have studied its influence on the
transport of neutrinos [67].

The differential neutrino scattering cross section per unit volume in an in-
finite and homogeneous system of relativistic fermions as calculated in linear
response theory is given by (42). The medium is characterized by the quark po-
larization tensor Παβ . In the case of free quarks, each flavor contributes a term
of the form

Παβ(q) = −iTrc

∫
d4p

(2π)4
Tr [S0(p)ΓαS0(p + q)Γβ ] , (54)

where S0(p) is the free quark propagator at finite chemical potential and temper-
ature. The outer trace is over color and simplifies to a Nc = 3 degeneracy. The
inner trace is over spin, and the Γα are the neutrino-quark vertex functions which
determine the spin channel. Specifically, the vector polarization is computed by
choosing (Γα, Γβ) = (γα, γβ). The axial and mixed vector-axial polarizations
are similarly obtained from (Γα, Γβ) = (γαγ5, γβγ5) and (Γα, Γβ) = (γα, γβγ5),
respectively.

The free quark propagators in (54) are naturally modified in a supercon-
ducting medium. As first pointed out by Bardeen, Cooper, and Schrieffer several
decades ago, the quasi-particle dispersion relation is modified due to the presence
of a gap in the excitation spectrum. In calculating these effects, we will consider
the simplified case of QCD with two quark flavors which obey SU(2)L× SU(2)R

flavor symmetry, given that the light u and d quarks dominate low-energy phe-
nomena. Furthermore we will assume that, through some unspecified effective
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interactions, quarks pair in a manner analogous to the BCS mechanism [68]. The
relevant consequences of this are the restoration of chiral symmetry (hence all
quarks are approximately massless) and the existence of an energy gap at zero
temperature, Δ0, with approximate temperature dependence,

Δ(T ) = Δ0

√
1−

(
T

Tc

)2

. (55)

The critical temperature Tc � 0.57Δ0 is likewise taken from BCS theory; this re-
lation has been shown to hold for perturbative QCD [69] and is thus a reasonable
assumption for non-perturbative physics.

Breaking the SUc(3) color group leads to complications not found in electro-
dynamics. In QCD the superconducting gap is equivalent to a diquark conden-
sate, which can at most involve two of the three fundamental quark colors. The
condensate must therefore be colored. Since the scalar diquark (in the 3̄ color
representation) appears to always be the most attractive channel, we consider
the anomalous (or Gorkov) propagator [70]

F (p)abfg = 〈qT
fa(p)Cγ5qgb(−p)〉

= −iεab3εfgΔ

(
Λ+(p)
p2

o − ξ2
p

+
Λ−(p)
p2

o − ξ̄2
p

)
γ5 C . (56)

Here, a, b are color indices, f, g are flavor indices, εabc is the usual anti-symmetric
tensor and we have conventionally chosen 3 to be the condensate color. This
propagator is also antisymmetric in flavor and spin, with C = −iγ0γ2 being the
charge conjugation operator.

The color bias of the condensate forces a splitting of the normal quark
propagator into colors transverse and parallel to the diquark. Quarks of color 3,
parallel to the condensate in color space, will be unaffected and propagate freely,
with

S0(p)
bg
af = iδb

aδ
g
f

(
Λ+(p)
p2

o − E2
p

+
Λ−(p)
p2

o − Ē2
p

)
(pμγ

μ − μγ0) . (57)

This is written in terms of the particle and anti-particle projection operators
Λ+(p) and Λ−(p) respectively, where Λ±(p) = (1 ± γ0γ · p̂)/2. The excitation
energies are simply Ep = |p| − μ for quarks and Ep = |p|+ μ for anti-quarks.

On the other hand, transverse quark colors 1 and 2 participate in the diquark
and thus their quasi-particle propagators are given as

S(p)bg
af = iδb

aδ
g
f

(
Λ+(p)
p2

o − ξ2
p

+
Λ−(p)
p2

o − ξ̄2
p

)
(pμγ

μ − μγ0) . (58)

The quasi-particle energy is ξp =
√

(|p| − μ)2 + Δ2, and for the anti-particle
ξ̄p =

√
(|p|+ μ)2 + Δ2.

The appearance of an anomalous propagator in the superconducting phase
indicates that the polarization tensor gets contributions from both the normal
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(a) (b)
Fig. 8. Standard loop (a) and anomalous loop (b) diagrams contributing to the quark
polarization operator

quasi-particle propagators (58) and anomalous propagator (56). Thus, to order
G2

F , (54) is replaced with the two contributions corresponding to the diagrams
shown in Fig. 8, and written

Παβ(q) = −i
∫

d4p

(2π)4
{Tr [S0(p)ΓαS0(p + q)Γβ ]

+ 2Tr [S(p)ΓαS(p + q)Γβ ] + 2Tr [F (p)ΓαF̄ (p + q)Γβ ]
}
. (59)

The remaining trace is over spin, as the color trace has been performed. Fig. 8(a)
corresponds to the first two terms, which have been decomposed into one term
with ungapped propagators (57) and the other with gapped quasi-particle prop-
agators (58). Fig. 8(b) represents the third, anomalous term.

For neutrino scattering we must consider vector, axial, and mixed vector-
axial channels, all summed over flavors. The full polarization, to be used in
evaluating (42), may be written

Παβ =
∑

f

[
(Cf

V )2ΠV
αβ + (Cf

A)2ΠA
αβ − 2Cf

V Cf
AΠ

V A
αβ

]
. (60)

The coupling constants for up quarks are Cu
V = 1

2 − 4
3 sin2 θW and Cu

A = 1
2 , and

for down quarks, Cd
V = − 1

2 + 2
3 sin2 θW and Cd

A = − 1
2 , where sin2 θW � 0.23 is

the Weinberg angle.
The differential cross section, (42) and the total cross section are obtained

by integrating over all neutrino energy transfers and angles. Results for the neu-
trino mean free path, λ = V/σ, are shown in Fig. 9 as a function of incoming
neutrino energy Eν (for ambient conditions of μq = 400 MeV and T = 30 MeV).
They show the same energy dependence found previously for free relativistic
and degenerate fermionic matter [49]; λ ∝ 1/E2

ν for Eν � T and λ ∝ 1/Eν

for Eν 	 T . The results indicate that this energy dependence is not modified
by the presence of a gap when Δ ∼ T . Thus, the primary effect of the super-
conducting phase is a much larger mean free path. This is consistent with the
suppression found in the vector-longitudinal response function, which dominates
the polarization sum (60), at q0 < q.

We now consider the cooling of a macroscopic sphere of quark matter, a
toy approximation for the core of a neutron star with a mixed quark phase, as
it becomes superconducting. As in the preceding calculation, we consider the
relatively simple case of two massless flavors with identical chemical potentials
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Fig. 9. Left panel: Neutrino mean free path as a function of neutrino energy Eν . Right
panel: Neutrino mean free paths for Eν = πT as a function of Δ/T . These results are
virtually independent of temperature for T∼< 50 MeV.

and disregard the quarks parallel in color to the condensate; i.e. we consider a
background comprised exclusively of quasi-quarks.

The cooling of a spherical system of quark matter from T ∼ Tc ∼ 50 MeV
is driven by neutrino diffusion, for the neutrino mean free path is much smaller
than the dimensions of system of astrophysical size, and yet several orders of
magnitude larger than the mean free path of the quarks. The diffusion equation
for energy transport by neutrinos in a spherical geometry is

CV
dT

dt
= − 1

r2

∂Lν

∂r
, (61)

where CV is the specific heat per unit volume of quark matter, T is the tem-
perature, and r is the radius. The neutrino energy luminosity for each neutrino
type, Lν , depends on the neutrino mean free path and the spatial gradients in
temperature and is approximated by an integral over neutrino energy Eν

Lν
∼= 6

∫
dEν

c

6π2 E3
νr

2λ(Eν)
∣∣∣∣∂f(Eν)

∂r

∣∣∣∣ . (62)

We assume that neutrino interactions are dominated by the neutral current
scattering which is common to all neutrino types, accounting for the factor 6 in
(62).

The solution to the diffusion equation will depend on the initial temperature
gradients. However, being primarily interested in a qualitative description of
cooling through a second-order phase transition to superconducting matter, the
temporal behavior can be characterized by a time scale τc which is proportional
to the inverse cooling rate. This characteristic time is

τc(T ) = CV (T )
R2

c〈λ(T )〉 , (63)
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Fig. 10. The extent to which different physical quantities are affected by a supercon-
ducting transition. Ratios of the cooling time scale (solid curve), the inverse mean
free path (short-dashed curve) and the matter specific heat (dot-dashed curve) in the
superconducting phase to that in the normal phase is shown as a function of the mat-
ter temperature. The ratio of the gap to its zero temperature value Δ0 is also shown
(long-dashed curve).

and is a strong function of the temperature since it depends on both the specific
heat CV and the energy-averaged neutrino mean free path, 〈λ(T )〉. The latter
quantity is here approximated by λ(Eν = πT ) since the neutrinos are in thermal
equilibrium. Using BCS theory, as described in the previous section, 〈λ(T )〉
depends on the gap Δ as shown in the right panel of Fig. 9. The results indicate
that for small Δ/T , λ is not strongly modified, but as Δ/T increases so too does
λ, non-linearly at first and then exponentially for Δ/T>∼ 5. Also, in the BCS
theory, the temperature dependencies of CV (dashed curve) and Δ (dot-dashed
curve) are shown in Fig. 10. Finally, the ratio τΔ

c (T )/τc(T ), a measure of the
extent to which the cooling rate is changed by a gap, is shown by the solid line
in Fig. 10. We note that the diffusion approximation is only valid when λ 	 R
and will thus fail for very low temperatures, when λ∼< R.

These results are readily interpreted. The cooling rate around Tc is influ-
enced mainly by the peak in the specific heat associated with the second order
phase transition, since the neutrino mean free path is not strongly affected when
T ≥ Δ. Subsequently, as the matter cools, both CV and λ−1 decrease in a non-
linear fashion for T ∼ Δ. Upon further cooling, when T 	 Δ, both CV and λ−1

decrease exponentially. Both effects accelerate the cooling process.
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We conclude that if it were possible to measure the neutrino luminosity
from the hypothetical object described here, a second order superconducting
transition might be identified by the temporal characteristics of the late time
supernova neutrino signal from a PNS. Specifically, there might be a brief interval
during which the cooling would slow when the core temperature falls below Tc,
signified by a period of reduced neutrino detection. However, this effect might be
obscured by ν−opaque matter outside the star’s core. If the neutrino opacity of
these outer regions of the star is large, it is likely that any sharp temporal feature
associated with neutrino transport in the core will be diluted as the neutrino
diffuse through the outer regions. Nevertheless, the main finding, which is that
phase transitions in the core can have a discernible impact on the transport of
neutrinos and suggests that the late time supernova neutrino signal is a promising
probe of the high density and low temperature region of the QCD phase diagram.

5 Results of PNS Simulations

Neutrino signals from PNSs depends on many stellar properties, including the
mass; initial entropy, lepton fraction and density profiles; and neutrino opaci-
ties. Pons et al. [10] carried out a detailed study of the dependence of neutrino
emission on PNS characteristics. They verified the generic results of Burrows &
Lattimer [1] that both neutrino luminosities and average energies increased with
increasing mass (see Fig. 11). In addition, they found that variations in initial
entropy and lepton fraction profiles in the outer regions of the PNS caused only
transient (lasting a few tenths of a second) variations in neutrino luminosities
and energies. Variations in the central lepton fraction and entropy were found
to produce modest changes in neutrino luminosities that persisted to late times.
The central values of lepton fraction and entropy are established during core
collapse, and will depend upon the initial properties of the star as well as the
EOS and neutrino transport during the collapse.

5.1 Baseline Results

Properties of the dense matter EOS that affect PNS evolution include the com-
pressibility, symmetry energy, specific heat, and composition. Pons et al. [10]
employed a field theoretical EOS [4], with which the results due to some differ-
ences in stellar size (due to variations in nuclear interactions) and composition
were studied. Some results are summarized in Fig. 11. Overall, both the average
energies and luminosities of stars containing hyperons were larger compared to
those without. In addition, for stars without hyperons, those stars with smaller
radii had higher average emitted neutrino energy, although the predicted lu-
minosities for early times (t < 10 s) were insensitive to radii. This result only
holds if the opacities are calculated consistently with each EOS [49,50]; other-
wise rather larger variations in evolutions would have been found [45,51]. The
same held true for models which allowed for the presence of hyperons, except
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Fig. 11. Left: The evolution of the neutrino average energy and total neutrino lumi-
nosity is compared for several assumed PNS baryon masses and EOSs. The EOSs in the
left panels contain only baryons and leptons while those in the right panels also contain
hyperons. Top right panel: Evolution of the central baryon number density for different
baryonic mass stars containing hyperons (model GM3npH) which are metastable. Bot-
tom right panel: Time required by stars shown in the top panel to reach the unstable
configuration

when the initial proto-neutron star mass was significantly larger than the maxi-
mum mass for cold, catalyzed matter. Another new result was that the average
emitted neutrino energy of all flavors increased during the first 2-5 seconds of
evolution, and then decreased nearly linearly with time. For times larger than
about 10 seconds, and prior to the occurrence of neutrino transparency, the
neutrino luminosities decayed exponentially with a time constant that was sen-
sitive to the high-density properties of matter. Significant variations in neutrino
emission occurred beyond 10 seconds: it was found that neutrino luminosities
were larger during this time for stars with smaller radii and with the inclusion
of hyperons in the matter. Finally, significant regions of the stars appeared to
become convectively unstable during the evolution , as several works have found
[71,72,73,74,75].

The right panel of Fig. 11 shows the time development of the central baryon
density (top panel) and also the time to the collapse instability as a function
of baryon mass (bottom panel). The larger the mass, the shorter the time to
instability, since the PNS does not have to evolve in lepton number as much.
Above 2.005 M�, the metatstability disappears because the GM3npH initial
model with the lepton and entropy profiles we chose is already unstable. Below
about 1.73 M�, there is no metastability, since this is the maximum mass of the
cold, catalyzed npH star for GM3. The signature of neutrino emission from a
metastable PNS should be identifiable and it is discussed in Section 5.4.
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5.2 Influence of Many-Body Correlations

The main effect of the larger mean free paths produced by RPA corrections [50]
is that the inner core deleptonizes more quickly. In turn, the maxima in central
temperature and entropy are reached on shorter timescales. In addition, the
faster increase in thermal pressure in the core slows the compression associated
with the deleptonization stage, although after 10 s the net compressions of all
models converge.

The relatively large, early, changes in the central thermodynamic variables
do not, however, translate into similarly large effects on observables such as the
total neutrino luminosity and the average radiated neutrino energy, relative to
the baseline simulation. The luminosities for the different models are shown as
a function of time in Fig. 12. The left panel shows the early time development
in detail. The exploratory models agree with the results reported in [51,52].
However, the magnitude of the effects when full RPA corrections are applied is
somewhat reduced compared to the exploratory models. It is especially impor-
tant that at and below nuclear density, the corrections due to correlations are
relatively small. Since information from the inner core is transmitted only by
the neutrinos, the time scale to propagate any high density effect to the neu-
trinosphere is the neutrino diffusion time scale. Since the neutrinosphere is at a
density approximately 1/100 of nuclear density, and large correlation corrections
occur only above 1/3 nuclear density where nuclei disappear, we find that corre-
lation corrections calculated here have an effect at the neutrinosphere only after

Fig. 12. Left: The upper panel shows the total emitted neutrino luminosity for the
PNS evolutions described in Reddy et al. [50]. The lower panel shows the ratio of
the luminosities obtained in the three models which contain corrections to the baseline
(Hartree approximation) model. Right: Emitted neutrino luminosity for long-term PNS
evolutions
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Fig. 13. Lifetimes of metastable stars as a function of the stellar baryon mass. Solid
lines show results for PNSs containing kaon-condensates and dashed lines show the
results of Pons, et al. [10] for PNSs containing hyperons

1.5 s. Moreover, the RPA suppression we have calculated is considerably smaller
than those reported in [51,52], reaching a maximum of about 30% after 5 s, com-
pared to a luminosity increase of 50% after only 2 s. However, the corrections
are still very important during the longer-term cooling stage (see Fig. 12), and
result in a more rapid onset of neutrino transparency compared to the Hartree
results.

5.3 Signals in Detectors

In Fig. 13 the lifetimes versus MB for stars containing hyperons (npH) and
npK stars are compared [76]. In both cases, the larger the mass, the shorter
the lifetime. For kaon-rich PNSs, however, the collapse is delayed until the final
stage of the Kelvin-Helmholtz epoch, while this is not necessarily the case for
hyperon-rich stars.

In Fig. 14 the evolution of the total neutrino energy luminosity is shown
for different models. Notice that the drop in the luminosity for the stable star
(solid line), associated with the end of the Kelvin-Helmholtz epoch, occurs at
approximately the same time as for the metastable stars with somewhat higher
masses. In all cases, the total luminosity at the end of the simulations is below
1051 erg/s. The two upper shaded bands correspond to SN 1987A detection
limits with KII and IMB, and the lower bands correspond to detection limits in
SNO and SuperK for a future galactic supernova at a distance of 8.5 kpc. The
times when these limits intersect the model luminosities indicate the approximate
times at which the count rate drops below the background rate (dN/dt)BG = 0.2
Hz.

The poor statistics in the case of SN 1987A precluded a precise estimate
of the PNS mass. Nevertheless, had a collapse to a black hole occurred in this
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Fig. 14. The evolution of the total neutrino luminosity for stars of various baryon
masses. Shaded bands illustrate the limiting luminosities corresponding to a count
rate of 0.2 Hz in all detectors, assuming a supernova distance of 50 kpc for IMB and
Kamioka, and 8.5 kpc for SNO and SuperK. The width of the shaded regions represents
uncertainties in the average neutrino energy from the use of a diffusion scheme for
neutrino transport

case, it must have happened after the detection of neutrinos ended. Thus the
SN 1987A signal is compatible with a late kaonization-induced collapse, as well
as a collapse due to hyperonization or to the formation of a quark core. More
information would be extracted from the detection of a galactic SN with the new
generation of neutrino detectors.

In SNO, about 400 counts are expected for electron antineutrinos from a
supernova located at 8.5 kpc. The statistics would therefore be improved signif-
icantly compared to the observations of SN 1987A. A sufficiently massive PNS
with a kaon condensate becomes metastable, and the neutrino signal terminates,
before the signal decreases below the assumed background. In SuperK, however,
up to 6000 events are expected for the same conditions (because of the larger
fiducial mass) and the effects of metastability due to condensate formation in
lower mass stars would be observable.

5.4 What Can We Learn From Neutrino Detections?

The calculations of Pons, et al. [76] show that the variations in the neutrino
light curves caused by the appearance of a kaon condensate in a stable star are
small, and are apparently insensitive to large variations in the opacities assumed
for them. Relative to a star containing only nucleons, the expected signal differs
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by an amount that is easily masked by an assumed PNS mass difference of
0.01 − 0.02 M�. This is in spite of the fact that, in some cases, a first order
phase transition appears at the star’s center. The manifestations of this phase
transition are minimized because of the long neutrino diffusion times in the star’s
core and the Gibbs’ character of the transition. Both act in tandem to prevent
either a “core-quake” or a secondary neutrino burst from occurring during the
Kelvin-Helmholtz epoch.

Observable signals of kaon condensation occur only in the case of metastable
stars that collapse to a black hole. In this case, the neutrino signal for a star
closer than about 10 kpc is expected to suddenly stop at a level well above that
of the background in a sufficiently massive detector with a low energy threshold
such as SuperK. This is in contrast to the signal for a normal star of similar mass
for which the signal continues to fall until it is obscured by the background. The
lifetime of kaon-condensed metastable stars has a relatively small range, of order
50–70 s for the models studied here, which is in sharp contrast to the case of
hyperon-rich metastable stars for which a significantly larger variation in the
lifetime (a few to over 100 s) was found. This feature of kaon condensation
suggests that stars that destabilize rapidly cannot do so because of kaons.

Pons, et al. [76] determined the minimum lifetime for metastable stars with
kaons to be about 40 s by examining the most favorable case for kaon condensa-
tion, which is obtained by maximizing the magnitude of the optical potential.
The maximum optical potential is limited by the binary pulsar mass constraint,
which limits the star’s maximum gravitational mass to a minimum value of 1.44
M�. Therefore, should the neutrino signal from a future supernova abruptly ter-
minate sooner than 40 s after the birth of the PNS, it would be more consistent
with a hyperon- or quark-induced instability than one due to kaon condensation.

It is important to note that the collapse to a black hole in the case of kaon
condensation is delayed until the final stages of the Kelvin-Helmholtz epoch,
due to the large neutrino diffusion time in the inner core. Consequently, to
distinguish between stable and metastable kaon-rich stars through observations
of a cessation of a neutrino signal from a galactic supernovas is only possible
using sufficiently massive neutrino detectors with low energy thresholds and low
backgrounds, such as the current SNO and SuperK, and future planned detectors
including the UNO.

5.5 Expectations From Quark Matter

Strangeness appearing in the form of a mixed phase of strange quark matter
also leads to metastability. Although quark matter is also suppressed by trapped
neutrinos [40,25], the transition to quark matter can occur at lower densities than
the most optimistic kaon case, and the dependence of the threshold density on YL

is less steep than that for kaons. Thus, it is an expectation that metastability due
to the appearance of quarks, as for the case of hyperons, might be able to occur
relatively quickly. Steiner, et al. [25] have demonstrated that the temperature
along adiabats in the quark-hadronic mixed phase is much smaller than what
is found for the kaon condensate-hadronic mixed phase. Calculations of PNS
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evolution with a mixed phase of quark matter, including the possible effects of
quark matter superfluidity [67] are currently in progress and will be reported
separately.

6 Long-Term Cooling: The Next Million Years

Following the transparency of the neutron star to neutrinos, the only observa-
tional link with these objects is through photon emissions, either as a pulsar or
through thermal emissions or both. Thermal emissions of course are controlled
by the temperature evolution of the star, and this depends sensitively upon
its internal composition. The tabulation of temperatures and ages for a set of
neutron stars would go a long way to deciding among several possibilities.

6.1 Thermal Evolution

The cooling of a young (age < 105 yr) neutron star is mainly governed by
ν−emission processes and the specific heat [77]. Due to the extremely high ther-
mal conductivity of electrons, a neutron star becomes nearly isothermal within
a time tw ≈ 1 − 100 years after its birth, depending upon the thickness of the
crust [7]. After this time its thermal evolution is controlled by energy balance:

dEth

dt
= CV

dT

dt
= −Lγ − Lν + H , (64)

where Eth is the total thermal energy and CV is the specific heat. Lγ and Lν

are the total luminosities of photons from the hot surface and νs from the in-
terior, respectively. Possible internal heating sources, due, for example, to the
decay of the magnetic field or friction from differential rotation, are included in
H. Our cooling simulations were performed by solving the heat transport and
hydrostatic equations including general relativistic effects (see [77]). The sur-
face’s effective temperature Te is much lower than the internal temperature T
because of a strong temperature gradient in the envelope. Above the envelope
lies the atmosphere where the emerging flux is shaped into the observed spec-
trum from which Te can be deduced. As a rule of thumb Te/106 K ≈

√
T/108 K,

but modifications due to magnetic fields and chemical composition may occur.

6.2 Rapid vs. Slow Cooling

The simplest possible ν emitting processes are the direct Urca processes f1 +
$ → f2 + ν� , f2 → f1 + $ + ν�, where f1 and f2 are either baryons or quarks
and $ is either an electron or a muon. These processes can occur whenever
momentum conservation is satisfied among f1, f2 and $ (within minutes of birth,
the ν chemical potential vanishes). If the unsuppressed direct Urca process for
any component occurs, a neutron star will rapidly cool because of enhanced
emission: the star’s interior temperature T will drop below 109 K in minutes
and reach 107 K in about a hundred years. Te will hence drop to less than
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300,000 K after the crustal diffusion time tw [7,78,79]. This is the so-called
rapid cooling paradigm. If no direct Urca processes are allowed, or they are all
suppressed, cooling instead proceeds through the significantly less rapid modified
Urca process in which an additional fermion enables momentum conservation.
This situation could occur if no hyperons are present, or the nuclear symmetry
energy has a weak density dependence [61,80]. The ν emission rates for the
nucleon, hyperon, and quark Urca and modified Urca processes can be found
in [81].

6.3 Superfluid and Superconducting Gaps

Pairing is unavoidable in a degenerate Fermi liquid if there is an attractive
interaction in any channel. The resulting superfluidity, and in the case of charged
particles, superconductivity, in neutron star interiors has a major effect on the
star’s thermal evolution through suppressions of neutrino (ν) emission processes
and specific heats [77,78]. Neutron (n), proton (p) and Λ-hyperon superfluidity in
the 1S0 channel and n superfluidity in the 3P2 channel have been shown to occur
with gaps of a few MeV or less [82,83]. However, the density ranges in which gaps
occur remain uncertain. At large baryon densities for which perturbative QCD
applies, pairing gaps for like quarks have been estimated to be a few MeV [66].
However, the pairing gaps of unlike quarks (ud, us, and ds) have been suggested
to be several tens to hundreds of MeV through non-perturbative studies [65]
kindling interest in quark superfluidity and superconductivity [84,85] and their
effects on neutron stars [86,87].

The effect of the pairing gaps on the emissivities and specific heats for
massive baryons are investigated in [88] and are here generalized to the case of
quarks. The principal effects are severe suppressions of both the emissivity and
specific heat when T 	 Δ, where Δ is the pairing gap. In a system in which
several superfluid species exist the most relevant gap for these suppressions is the
smallest one. The specific heat suppression is never complete, however, because
leptons remain unpaired. Below the critical temperature Tc, pairs may recom-
bine, resulting in the emission of νν̄ pairs with a rate that exceeds the modified
Urca rate below 1010 K [89]; these processes are included in our calculations.

The baryon and quark pairing gaps we adopt are shown in Fig. 15. Note
that gaps are functions of Fermi momenta (pF (i), i denoting the species) which
translates into a density dependence. For pF (n, p)∼< 200− 300 MeV/c, nucleons
pair in the 1S0 state, but these momenta correspond to densities too low for
enhanced ν emission involving nucleons to occur. At higher pF ’s, baryons pair
in higher partial waves. The n 3P2 gap has been calculated for the Argonne
V18, CD-Bonn and Nijmegen I & II interactions [82]. This gap is crucial since it
extends to large pF (n) and can reasonably be expected to occur at the centers
of neutron stars. For pF (n) > 350 MeV/c, gaps are largely uncertain because
of both experimental and theoretical uncertainties [82]. The curves [a], [b] and
[c] in Fig. 15 reflect the range of uncertainty. The p 3P2 gap is too small to be
of interest. Gaps for the 1S0 pairing of Λ, taken from [83] and shown as dotted
curves, are highly relevant since Λs participate in direct Urca emission as soon
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Fig. 15. Pairing gaps adopted for neutron 1S0 and 3P2, proton 1S0, Λ 1S0, and quarks.
The n 3P2 gaps are anisotropic; plotted values are angle-averaged. The Λ gaps corre-
spond, in order of increasing Δ, to background densities nB = 0.48, 0.64 and 0.8 fm−3,
respectively. The s-wave quark gaps are schematic; see text for details

as they appear [80]. Experimental information beyond the 1S0 channel for Λ
is not available. Δs for Σ−hyperons remain largely unexplored. The quark (q)
gaps are taken to be Gaussians centered at pF (q) = 400 MeV/c with widths of
200 MeV/c and heights of 100 MeV [model D], 10 MeV [C], 1 MeV [B] and 0.1
MeV [A], respectively. The reason for considering quark gaps much smaller than
suggested in [65,66] is associated with the multicomponent nature of charge-
neutral, beta-equilibrated, neutron star matter as will become clear shortly.

6.4 Effects of Composition

We consider four generic compositions: charge-neutral, beta equilibrated mat-
ter containing nucleons only (np), nucleons with quark matter (npQ), nucleons
and hyperons (npH), and nucleons, hyperons and quarks (npHQ). In the cases
involving quarks, a mixed phase of baryons and quarks is constructed by satis-
fying Gibbs’ phase rules for mechanical, chemical and thermal equilibrium [35].
The phase of pure quark matter exists only for very large baryon densities, and
rarely occurs in our neutron star models. Baryonic matter is calculated using a
field-theoretic model at the mean field level [90]; quark matter is calculated us-
ing either a bag-like model or the Nambu-Jona-Lasinio quark model [40,25]. The
equation of state (EOS) is little affected by the pairing phenomenon, since the
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energy density gained is negligible compared to the ground state energy densities
without pairing.

Additional particles, such as quarks or hyperons, have the effect of softening
the EOS and increasing the central densities of stars relative to the np case. For
the npQ model studied, a mixed phase appears at the density nB = 0.48 fm−3.
Although the volume fraction of quarks is initially zero, the quarks themselves
have a significant pF (q) when the phase appears. The pF s of the three quark
flavors become the same at extremely high density, but for the densities of in-
terest they are different due to the presence of negatively charged leptons. In
particular, pF (s) is much smaller than pF (u) and pF (d) due to the larger s-quark
mass. Use of the Nambu–Jona-Lasinio model, in which quarks acquire density-
dependent masses resembling those of constituent quarks, exaggerates the re-
duction of pF (s). This has dramatic consequences since the pairing phenomenon
operates at its maximum strength when the Fermi momenta are exactly equal;
even small asymmetries cause pairing gaps to be severely reduced [85,91]. In ad-
dition, one may also expect p-wave superfluidity, to date unexplored, which may
yield gaps smaller than that for the s-wave. We therefore investigate pairing gaps
that are much smaller than those reported for the case of s-wave superfluidity
and equal quark pF ’s.

The introduction of hyperons does not change these generic trends. In the
case npH, the appearance of hyperons changes the lepton and nucleon pF ’s
similarly to the appearance of quarks although with less magnitude. While the
appearance of quarks is delayed by the existence of hyperons, at high densities
the pF ’s of nucleons and quarks remain similar to those of the npQ case. The
existence of either hyperons or quarks, however, does allow the possibility of
additional direct Urca processes involving themselves as well as those involving
nucleons by decreasing pF (n)− pF (p). For the npQ and npHQ models studied,
the maximum masses are ∼= 1.5M� , the central baryon densities are ∼= 1.35
fm−3, and the volume fractions of quarks at the center are ∼= 0.4.

6.5 Examples of Results

Cooling simulations of stars without hyperons and with hyperons are compared,
in Figs. 16 and 17, respectively, to available observations of thermal emissions
from pulsars. Sources for the observational data can be found in [92]. However, at
the present time, the inferred temperatures must be considered as upper limits
because the total flux is contaminated, and in some cases dominated, by the pul-
sar’s magnetospheric emission and/or the emission of a surrounding synchrotron
nebula. Furthermore, the neutron star surface may be reheated by magneto-
spheric high energy photons and particles; late-time accretion for non-pulsing
neutron stars is also possible. Other uncertainties arise in the temperature esti-
mates due to the unknown chemical composition and magnetic field strength in
the surface layers, and in the age, which is based upon the observed spin-down
time. In these figures, the bolder the data symbol the better the data.
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Fig. 16. Cooling of 1.4M� stars with np matter (continuous curves) and npQ matter
(dashed and dotted curves). The curves labelled as [a], [b], and [c] correspond to n 3P2

gaps as in Fig. 15; [z] corresponds to zero n gap. Models labelled [A], [B], [C] and [D]
correspond to quark gaps as in Fig. 15; [Z] corresponds to zero quark gap

np and npQ Matter

The np case is considered in Fig. 16, in which solid lines indicate the temperature
evolution of a 1.4 M� star for quarkless matter: case [z] is for no nucleon pairing
at all, and cases [a], [b] and [c] correspond to increasing values for the neutron
3P2 gap, according to Fig. 15. The field-theoretical model employed for the
nucleon interactions allows the direct nucleon Urca process, which dominates the
cooling. The unimpeded direct Urca process carries the temperature to values
well below the inferred data. Pairing suppresses the cooling for T < Tc, where T
is the interior temperature, so Te increases with increasing Δ. If the direct Urca
process is not allowed, the range of predicted temperatures is relatively narrow
due to the low emissivity of the modified Urca process. We show an example of
such cooling (curve [Mc]) using the n 3P2 gap [c] for a 1.4M� with an EOS [93]
for which the direct Urca cooling is not allowed.

The other curves in the figure illustrate the effects of quarks upon the cool-
ing. The dotted curves [Z] are for vanishingly small quark gaps; the dashed curves
([A], [B], [C] and [D]) are for quark gaps as proposed in Fig. 15. For nonexistent
([z]) or small ([a]) nucleon gaps, the quark Urca process is irrelevant and the de-
pendence on the existence or the size of the quark gaps is very small. However, for
large nucleon gaps ([b] and [c]), the quark direct Urca process quickly dominates
the cooling as the nucleon direct Urca process is quenched. It is clear that for
quark gaps of order 1 MeV or greater ([B], [C] or [D]) the effect of quarks is again
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very small. There is at most a slight increase in the stars temperatures at ages
between 101 to 105−6 years due to the reduction of pF (n) and the consequent
slightly larger gap (Fig. 15). Even if the quark gap is quite small ([A]), quarks
have an effect only if the nucleon gap is very large ([b] or [c]), i.e., significantly
larger than the quark gap: the nucleon direct Urca process is suppressed at high
temperatures and the quark direct Urca process has a chance to contribute to
the cooling. We find that the effects of changing the stellar mass M are similar
to those produced by varying the baryon gap, so that only combinations of M
and Δ might be constrained by observation.

npH and npHQ Matter

The thermal evolution of stars containing hyperons has been discussed in [94,95],
but we obtain qualitatively different results here. Hyperons open new direct Urca
channels: Λ → p + e + νe and Λ + e → Σ− + νe if Σ−’s are present, with their
inverse processes. Previous results showed that the cooling is naturally controlled
by the smaller of the Λ or n gap. However, this is significantly modified when
the Λ gap is more accurately treated. At the Λ appearance threshold, the gap
must vanish since pF (Λ) is vanishingly small. We find that a very thin layer,
only a few meters thick, of unpaired or weakly paired Λ’s is sufficient to control
the cooling. This effect was overlooked in previous works perhaps because they
lacked adequate zonal resolution.
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In Fig. 17 we compare the evolution of stars of different masses made of
either npH or npHQ matter . We find that all stars, except the most massive
npH ones, follow two distinctive trajectories depending on whether their central
density is below or above the threshold for Λ appearance (= 0.54 fm−3 in our
model EOS, the threshold star mass being 1.28M� ). In the case of npH matter,
stars with M > 1.50M� are dense enough so that the Λ 1S0 gap vanishes and
hence undergo fast cooling, while stars made of npHQ matter do not attain
such high densities. The temperatures of npH stars with masses between 1.3
and 1.5 M� are below the ones obtained in the models of Fig. 16 with the same
n 3P2 gap [b], which confirms that the cooling is dominated by the very thin
layer of unpaired Λ’s (the slopes of these cooling curves are typical of direct
Urca processes). Only if the n 3P2 gap∼< 0.3 MeV do the cooling curves fall
below what is shown in Fig. 17. Notice, moreover, that in the mass range 1.3
– 1.48 M� the cooling curves are practically indistinguishable from those with
unpaired quark matter shown in Fig. 16. In these models with npH or npHQ
matter, there is almost no freedom to “fine-tune” the size of the gaps to attain
a given Te: stars with Λ’s will all follow the same cooling trajectory, determined
by the existence of a layer of unpaired or weakly paired Λ’s, as long as the n 3P2
gap is not smaller. It is, in some sense, the same result as in the case of np and
npQ matter: the smallest gap controls the cooling and now the control depends
on how fast the Λ 1S0 gap increases with increasing pF (Λ).

6.6 Implications

Our results indicate that observations could constrain combinations of the
smaller of the neutron and Λ−hyperon pairing gaps and the star’s mass. De-
ducing the sizes of quark gaps from observations of neutron star cooling will be
extremely difficult. Large quark gaps render quark matter practically invisible,
while vanishing quark gaps lead to cooling behaviors which are nearly indis-
tinguishable from those of stars containing nucleons or hyperons. Moreover, it
also appears that cooling observations by themselves will not provide definitive
evidence for the existence of quark matter itself.

7 The Structure of Catalyzed Stars

In this section, we explore from a theoretical perspective, how the structure of
neutron star depends upon the assumed EOS. This study is crucial if new ob-
servations of masses and radii are to lead to effective constraints of the EOS
of dense matter. Two general classes of stars can be identified: normal stars in
which the density vanishes at the stellar surface, and self-bound stars in which
the density at the surface is finite. Normal stars originate from nuclear force
models which can be conveniently grouped into three broad categories: non-
relativistic potential models, relativistic field theoretical models, and relativistic
Dirac-Brueckner-Hartree-Fock models. In each of these approaches, the presence
of additional softening components such as hyperons, Bose condensates or quark
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matter, can be incorporated. Details of these approaches have been further con-
sidered in Lattimer et al. [96] and Prakash et al. [4]. A representative sample,
and some general attributes, including references and typical compositions, of
equations of state employed here are summarized in Table 1.

For normal matter, the EOS is that of interacting nucleons above a tran-
sition density of 1/3 to 1/2 ns. Below this density, the ground state of matter
consists of heavy nuclei in equilibrium with a neutron-rich, low-density gas of
nucleons. However, for most of the purposes of this paper, the pressure in the
region n < 0.1 fm−3 is not relevant as it does not significantly affect the mass-
radius relation or other global aspects of the star’s structure. Nevertheless, the
value of the transition density, and the pressure there, are important ingredients
for the determination of the size of the superfluid crust of a neutron star that is
believed to be involved in the phenomenon of pulsar glitches (Link, Epstein, &
Lattimer [97]).

Four equations of state are taken from Akmal & Pandharipande [11]. These
are: AP1 (the AV18 potential), AP2 (the AV18 potential plus δvb relativistic
boost corrections), AP3 (the AV18 potential plus a three-body UIX potential
), and AP4 (the AV18 potential plus the UIX potential plus the δvb boost).
Three equations of state from Muller & Serbs [33], labelled MS1–3, correspond
to different choices of the parameters ξ and ζ which determine the strength of
the nonlinear vector and isovector interactions at high densities. The numer-
ical values used are ξ = ζ = 0; ξ = 1.5, ζ = 0.06; and ξ = 1.5, ζ = 0.02,
respectively. Six EOSs come from the phenomenological non-relativistic poten-
tial model of Prakash, Ainsworth & Lattimer [98], labelled PAL1–6, which have
different choices of the symmetry energy parameter at the saturation density, its
density dependence, and the bulk nuclear matter incompressibility parameter
Ks. The incompressibilities of PAL1–5 were chosen to be Ks = 180 or 240 MeV,
but PAL6 has Ks = 120 MeV. Three interactions denoted GM1–3 come from
the field-theoretical model of Glendenning & Moszkowski [14]. Two interactions
come from the field-theoretical model of Glendenning & Schaffner-Bielich [18]:
GL78 with UK(ρ0) = −140 MeV and TM1 with UK = −185 MeV. The la-
bels denoting the other EOSs in Table 1 are identical to those in the original
references.

The rationale for exploring a wide variety of EOSs, even some that are rela-
tively outdated or in which systematic improvements are performed, is two-fold.
First, it provides contrasts among widely different theoretical paradigms. Second,
it illuminates general relationships that exist between the pressure-density rela-
tion and the macroscopic properties of the star such as the radius. For example,
AP4 represents the most complete study to date of Akmal & Pandharipande
[11], in which many-body and special relativistic corrections are progressively
incorporated into prior models, AP1–3. AP1–3 are included here because they
represent different pressure-energy density-baryon density relations, and serve
to reinforce correlations between neutron star structure and microscopic physics
observed using alternative theoretical paradigms. Similarly, several different pa-
rameter sets for other EOSs are chosen.
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Table 1. Approach refers to the underlying theoretical technique. Composition refers
to strongly interacting components (n=neutron, p=proton, H=hyperon, K=kaon,
Q=quark); all models include leptonic contributions.

Symbol Reference Approach Composition
FP Friedman & Pandharipande [99] Variational np
PS Pandharipande & Smith [100] Potential nπ0

WFF(1-3) Wiringa, Fiks & Fabrocini [101] Variational np
AP(1-4) Akmal & Pandharipande [11] Variational np
MS(1-3) Muller & Serbs [33] Field Theoretical np
MPA(1-2) Müther, Prakash & Ainsworth [102] Dirac-Brueckner HF np
ENG Engvik et al. [103] Dirac-Brueckner HF np
PAL(1-6) Prakash, Ainsworth & Lattimer [98] Schematic Potential np
GM(1-3) Glendenning & Moszkowski [14] Field Theoretical npH
GS(1-2) Glendenning & Schaffner-Bielich [37] Field Theoretical npK
PCL(1-2) Prakash, Cooke & Lattimer [40] Field Theoretical npHQ
SQM(1-3) Prakash, Cooke & Lattimer [40] Quark Matter Q(u, d, s)

In all cases, except for PS (Pandharipande & Smith [100]), the pressure
is evaluated assuming zero temperature and beta equilibrium without trapped
neutrinos. PS only contains neutrons among the baryons, there being no charged
components. We chose to include this EOS, despite the fact that it has been
superseded by more sophisticated calculations by Pandharipande and coworkers,
because it represents an extreme case producing large radii neutron stars.

The pressure-density relations for some of the selected EOSs are shown in
Fig. 18 which displays three significant features to note for normal EOSs. First,
there is a fairly wide range of predicted pressures for beta-stable matter in the
density domain ns/2 < n < 2ns. For the EOSs displayed, the range of pressures
covers about a factor of five, but this survey is by no means exhaustive. That
such a wide range in pressures is found is somewhat surprising, given that each of
the EOSs provides acceptable fits to experimentally-determined nuclear matter
properties. Clearly, the extrapolation of the pressure from symmetric matter to
nearly pure neutron matter is poorly constrained. Second, the slopes of the pres-
sure curves are rather similar. A polytropic index of n � 1, where P = Kn1+1/n,
is implied. Third, in the density domain below 2ns, the pressure-density relations
seem to fall into two groups. The higher pressure group is primarily composed of
relativistic field-theoretical models, while the lower pressure group is primarily
composed of non-relativistic potential models. It is significant that relativistic
field-theoretical models generally have symmetry energies that increase propor-
tionately to the density while potential models have much less steeply rising
symmetry energies.

A few of the plotted normal EOSs have considerable softening at high densi-
ties, especially PAL6, GS1, GS2, GM3, PS and PCL2. PAL6 has an abnormally
small value of incompressibility (Ks = 120 MeV). GS1 and GS2 have phase tran-
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Fig. 18. Left: The pressure-density relation for a selected set of EOSs contained in
Table 1. The pressure is in units of MeV fm−3 and the density is in units of baryons
per cubic fermi. The nuclear saturation density is approximately 0.16 fm−3. Right: The
pressures inferred from the empirical correlation (65), for three hypothetical radius
values (10, 12.5 and 15 km) overlaid on the pressure-density relations shown on the
left. The light shaded region takes into account only the uncertainty associated with
C(n, M); the dark shaded region also includes a hypothetical uncertainty of 0.5 km in
the radius measurement. The neutron star mass was assumed to be 1.4 M�

sitions to matter containing a kaon condensate, GM3 has a large population of
hyperons appearing at high density, PS has a phase transition to a neutral pion
condensate and a neutron solid, and PCL2 has a phase transition to a mixed
phase containing strange quark matter. These examples are representative of the
kinds of softening that could occur at high densities.

The best-known example of self-bound stars results from Witten’s [104]
conjecture (also see Fahri & Jaffe [105], Haensel, Zdunik & Schaeffer [106], Alcock
& Olinto [107], and Prakash et al. [108]) that strange quark matter is the ultimate
ground state of matter. In this paper, the self-bound EOSs are represented by
strange-quark matter models SQM1–3, using perturbative QCD and an MIT-
type bag model, with parameter values given in Table 2. The existence of an
energy ceiling equal to the baryon mass, 939 MeV, for zero pressure matter
requires that the bag constant B ≤ 94.92 MeV fm−3. This limiting value is
chosen, together with zero strange quark mass and no interactions (αc = 0), for
the model SQM1. The other two models chosen, SQM2 and SQM3, have bag
constants adjusted so that their energy ceilings are also 939 MeV.
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Table 2. Parameters for self-bound strange quark stars. Numerical values employed
in the MIT bag model as described in Fahri & Jaffe [105].

Model B (MeV fm−3) ms (MeV) αc

SQM1 94.92 0 0
SQM2 64.21 150 0.3
SQM3 57.39 50 0.6

7.1 Neutron Star Radii

Fig. 19 displays the resulting mass-radius relations for catalyzed matter. Rhoades
& Ruffini [109] demonstrated that the assumption of causality beyond a fidu-
cial density ρf sets an upper limit to the maximum mass of a neutron star:
4.2
√

ρs/ρf M�. Lattimer et al. [96] have shown that the causality constraint
also sets a lower limit to the radius: R >∼ 1.52Rs, where Rs = 2GM/c2, which
is shown in Fig. 19. For a 1.4 M� star, this is about 4.5 km. The most reliable
estimates of neutron star radii in the near future will likely stem from observa-
tions of thermal emission from their surfaces. Such estimates yield the so-called
“radiation radius” R∞ = R/

√
1−Rs, a quantity resulting from redshifting the

star’s luminosity and temperature. A given value of R∞ implies that R < R∞
and M < 0.13(R∞/km) M�. Contours of R∞ are also displayed. With the ex-
ception of model GS1, the EOSs used to generate Fig. 19 result in maximum
masses greater than 1.442 M�, the limit obtained from PSR 1913+16. From a
theoretical perspective, it appears that values of R∞ in the range of 12–20 km
are possible for normal neutron stars whose masses are greater than 1 M�.

One observes that normal neutron stars have minimum masses of about
0.1 M� that are primarily determined by the EOS below ns. At the minimum
mass, the radii are generally in excess of 100 km. Self-bound stars have no
minimum mass and the maximum mass self-bound stars have nearly the largest
radii possible for a given EOS. If the strange quark mass ms = 0 and interactions
are neglected (αc = 0), the maximum mass is related to the bag constant B in the
MIT-type bag model by Mmax = 2.033 (56 MeV fm−3/B)1/2 M�. Prakash et al.
[108] and Lattimer et al. [96] showed that the addition of a finite strange quark
mass and/or interactions produces larger maximum masses. The constraint that
Mmax > 1.44 M� is thus automatically satisfied by the condition that the energy
ceiling is 939 MeV, and non-zero values of ms and αc yield larger radii for every
mass. The locus of maximum masses is given simply by R ∼= 1.85Rs (Lattimer
et al. [96]) as shown in the right-hand panel of Fig. 19. Strange quark stars with
electrostatically supported normal-matter crusts (Glendenning & Weber [110])
have larger radii than those with bare surfaces. Coupled with the additional
constraint M > 1M� from protoneutron star models, MIT-model strange quark
stars cannot have R < 8.5 km or R∞ < 10.5 km. These values are comparable
to the smallest possible radii for a Bose (pion or kaon) condensate EOS.

One striking feature of Fig. 19 is that in the mass range from 1–1.5 M� or
more the radius has relatively little dependence upon the stellar mass. The major
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Fig. 19. Mass-radius curves for several EOSs listed in Table 1. The left panel is for
stars containing nucleons and, in some cases, hyperons. The right panel is for stars
containing more exotic components, such as mixed phases with kaon condensates or
strange quark matter, or pure strange quark matter stars. In both panels, the lower
limit causality places on R is shown as a dashed line, a constraint derived from glitches
in the Vela pulsar is shown as the solid line labelled ΔI/I = 0.014, and contours of
constant R∞ = R/

√
1 − 2GM/Rc2 are shown as dotted curves. In the right panel,

the theoretical trajectory of maximum masses and radii for pure strange quark matter
stars is marked by the dot-dash curve labelled R = 1.85Rs

exceptions illustrated are the model GS1, in which a mixed phase containing a
kaon condensate appears at a relatively low density, and the model PAL6, which
has an extremely small nuclear incompressibility (120 MeV). Both of these have
considerable softening and a large increase in central density for M > 1 M�.

While it is generally assumed that a stiff EOS implies both a large maximum
mass and a large radius, many counter examples exist. For example, GM3, MS1
and PS have relatively small maximum masses but have large radii compared to
most other EOSs with larger maximum masses. Also, not all EOSs with extreme
softening have small radii for M > 1 M� (e.g., GS2, PS). Nonetheless, for stars
with masses greater than 1 M�, only models with a large degree of softening
(including strange quark matter configurations) can have R∞ < 12 km.

To understand the relative insensitivity of the radius to the mass for normal
neutron stars, it is relevant that a Newtonian polytrope with n = 1 has the
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property that the stellar radius is independent of both the mass and central
density. An n = 1 polytrope also has the property that the radius is proportional
to the square root of the constant K in the polytropic pressure law P = Kρ1+1/n.
This suggests that there might be a quantitative relation between the radius and
the pressure that does not depend upon the EOS at the highest densities, which
determines the overall softness or stiffness (and hence, the maximum mass).

In fact, this conjecture may be verified. Fig. 20 shows a remarkable empiri-
cal correlation between the radii of 1 and 1.4 M� normal stars and the matter’s
pressure evaluated at fiducial densities of 1, 1.5 and 2 ns. Numerically, the cor-
relation has the form of a power law between the radius RM , defined as the
radius at a particular mass M , and the total pressure P (n) evaluated at a given
density:

RM � C(n,M) [P (n)]0.23−0.26 . (65)

C(n,M) is a number that depends on the density n at which the pressure was
evaluated and the stellar mass M . An exponent of 1/4 was chosen for display
in Fig. 20, but the correlation holds for a small range of exponents about this
value. Using an exponent of 1/4, and ignoring points associated with EOSs with
phase transitions in the density ranges of interest, we find values for C(n,M), in

Fig. 20. Empirical relation between pressure, in units of MeV fm−3, and R, in km, for
EOSs listed in Table 1. The upper panel shows results for 1 M� (gravitational mass)
stars; the lower panel is for 1.4 M� stars. The different symbols show values of RP−1/4

evaluated at three fiducial densities
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Table 3. The quantity C(n, M) of (65) The quantity C(n, M), in units of km fm3/4

MeV−1/4, which relates the pressure (evaluated at density n) to the radius of neutron
stars of mass M . The errors are standard deviations

n 1 M� 1.4 M�
ns 9.53 ± 0.32 9.30 ± 0.60
1.5ns 7.14 ± 0.15 7.00 ± 0.31
2ns 5.82 ± 0.21 5.72 ± 0.25

units of km fm3/4 MeV−1/4, which are listed in Table 3. The error bars are taken
from the standard deviations. The correlation is seen to be somewhat tighter for
the baryon density n = 1.5ns and 2ns cases. Despite the relative insensitivity
of radius to mass for a particular EOS in this mass range, the nominal radius
RM has a variation ∼ 5 km. The largest deviations from this correlation occur
for EOSs with extreme softening or for configurations very near their maximum
mass. This correlation is valid only for cold, catalyzed neutron stars, i.e., not
for protoneutron stars which have finite entropies and might contain trapped
neutrinos.

If a measurement of P near ns can be deduced in this way, an important
clue about the symmetry properties of matter will be revealed. The energy per
particle and pressure of cold, beta stable nucleonic matter is

E(n, x) � E(n, 1/2) + Sv(n)(1− 2x)2 ,
P (n, x) � n2[E′(n, 1/2) + S′

v(n)(1− 2x)2] , (66)

where E(n, 1/2) is the energy per particle of symmetric matter and Sv(n) is the
bulk symmetry energy (which is density dependent). Primes denote derivatives
with respect to density. If only one term in this expansion is important, as noted
by Prakash, Ainsworth & Lattimer [98], then

Sv(n) � 1
2
∂2E(n, x)

∂x2 � E(n, 0)− E(n, 1/2) . (67)

At ns, the symmetry energy can be estimated from nuclear mass systematics and
has the value Sv ≡ Sv(ns) ≈ 27−36 MeV. Attempts to further restrict this range
from consideration of fission barriers and the energies of giant resonances provide
constraints between Sv and Sv(n) primarily by providing correlations between
Sv and Ss, the surface symmetry parameter. Lattimer & Prakash [111] detail
how Ss is basically a volume integral of the quantity 1− Sv/Sv(n) through the
nucleus. However, both the magnitude of Sv and its density dependence Sv(n)
remain uncertain. Part of the bulk symmetry energy is due to the kinetic energy
for noninteracting matter, which for degenerate nucleonic matter is proportional
to n2/3, but the remainder of the symmetry energy, due to interactions, is also
expected to contribute significantly to the overall density dependence.

Leptonic contributions must to be added to (66) to obtain the total energy
and pressure; the electron energy per baryon is (3/4)�cx(3π2nx)1/3. Matter in
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neutron stars is in beta equilibrium, i.e., μe = μn−μp = −∂E/∂x, which permits
the evaluation of the equilibrium proton fraction. The pressure at the saturation
density becomes

Ps = ns(1− 2xs)[nsS
′
v(1− 2xs) + Svxs] , (68)

where S′
v ≡ S′

v(ns) and the equilibrium proton fraction at ns is

xs � (3π2ns)−1(4Sv/�c)3 � 0.04 , (69)

for Sv = 30 MeV. Due to the small value of xs, we find that Ps � n2
sS

′
v.

Were we to evaluate the pressure at a larger density, contributions fea-
turing other nuclear parameters, including the nuclear incompressibility Ks =
9(dP/dn)|ns

and the skewness K ′
s = −27n3

s(d
3E/dn3)|ns

, also contribute. How-
ever,the Ks and K ′

s terms largely cancel, up to 2ns, so the symmetry term
dominates.

At present, experimental guidance concerning the density dependence of
the symmetry energy is limited and mostly based upon the division of the nu-
clear symmetry energy between volume and surface contributions. Upcoming
experiments involving heavy-ion collisions which might sample densities up to
∼ (3 − 4)ns, will be limited to analyzing properties of the nearly symmetric
nuclear matter EOS through a study of matter, momentum, and energy flow of
nucleons. However, the parity-violating experiment [112] to accurately determine
the thickness of the neutron skin in 208Pb at Jefferson Lab will provide impor-
tant constraints. The neutron skin thickness is directly proportional to Ss/Sv. In
addition, studies of heavy nuclei far off the neutron drip lines using radioactive
ion beams might also provide useful constraints.

7.2 Moments of Inertia

Besides the stellar radius, other global attributes of neutron stars are potentially
observable, including the moment of inertia and the binding energy. These quan-
tities depend primarily upon the ratio M/R as opposed to details of the EOS
(Lattimer & Prakash [5]).

The moment of inertia, for a star uniformly rotating with a very small or
zero angular velocity Ω, is [113]

I = (8π/3)
∫ R

0
r4(ρ + P/c2)e(λ−ν)/2dr . (70)

Useful approximations which are valid for three analytic, exact, solutions to
GR, the incompressible fluid (Inc), the Tolman VII (Tolman [114]; VII) solution,
and Buchdahl’s [115] solution (Buch), are

IInc/MR2 � 2(1− 0.87β − 0.3β2)−1/5 , (71)
IBuch/MR2 � (2/3− 4/π2)(1− 1.81β + 0.47β2)−1 , (72)
ITV II/MR2 � 2(1− 1.1β − 0.6β2)−1/7 . (73)
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Fig. 21. The moment of inertia I, in units of MR2, for several EOSs listed in Table 1.
The curves labelled “Inc”, “T VII”, “Buch” and “RP” are for an incompressible fluid,
the Tolman [114] VII solution, the Buchdahl [115] solution, and an approximation of
Ravenhall & Pethick [116], respectively. The inset shows details of I/MR2 for M/R → 0

Fig. 21 indicates that the T VII approximation is a rather good approximation to
most EOSs without extreme softening at high densities, for M/R ≥ 0.1 M�/km.
The EOSs with softening fall below this trajectory.

Another interesting result from Fig. 21 concerns the moments of inertia of
strange quark matter stars. Such stars are relatively closely approximated by
incompressible fluids, this behavior becoming exact in the limit of β → 0. This
could have been anticipated from the M ∝ R3 behavior of the M−R trajectories
for small β strange quark matter stars as observed in Fig. 19.

7.3 Crustal Fraction of the Moment of Inertia

A new observational constraint involving I concerns pulsar glitches. Occasionally,
the spin rate of a pulsar will suddenly increase (by about a part in 106) without
warning after years of almost perfectly predictable behavior. However, Link,
Epstein & Lattimer [97] argue that these glitches are not completely random:
the Vela pulsar experiences a sudden spinup about every three years, before
returning to its normal rate of slowing. Also, the size of a glitch seems correlated
with the interval since the previous glitch, indicating that they represent self-
regulating instabilities for which the star prepares over a waiting time. The
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angular momentum requirements of glitches in Vela imply that ≥ 1.4% of the
star’s moment of inertia drives these events.

Glitches are thought to represent angular momentum transfer between the
crust and another component of the star. In this picture, as a neutron star’s
crust spins down under magnetic torque, differential rotation develops between
the stellar crust and this component. The more rapidly rotating component
then acts as an angular momentum reservoir which occasionally exerts a spin-
up torque on the crust as a consequence of an instability. A popular notion at
present is that the freely spinning component is a superfluid flowing through a
rigid matrix in the thin crust, the region in which dripped neutrons coexist with
nuclei, of the star. As the solid portion is slowed by electromagnetic forces, the
liquid continues to rotate at a constant speed, just as superfluid He continues
to spin long after its container has stopped. This superfluid is usually assumed
to locate in the star’s crust, which thus must contain at least 1.4% of the star’s
moment of inertia.

The high-density boundary of the crust is naturally set by the phase bound-
ary between nuclei and uniform matter, where the pressure is Pt and the density
nt. The low-density boundary is the neutron drip density, or for all practical
purposes, simply the star’s surface since the amount of mass between the neu-
tron drip point and the surface is negligible. One can utilize . (70) to determine
the moment of inertia of the crust alone with the assumptions that P/c2 	 ρ,
m(r) �M , and ωj � ωR and P ∝ ρ4/3 in the crust (Lattimer & Prakash [5]:

ΔI

I
� 28πPtR

3

3Mc2
(1− 1.67β − 0.6β2)

β

[
1 +

2Pt(1 + 5β − 14β2)
ntmbc2β2

]−1

. (74)

In general, the EOS parameter Pt, in the units of MeV fm−3, varies over the
range 0.25 < Pt < 0.65 for realistic EOSs. The determination of this parameter
requires a calculation of the structure of matter containing nuclei just below
nuclear matter density that is consistent with the assumed nuclear matter EOS.
Unfortunately, few such calculations have been performed. Like the fiducial pres-
sure at and above nuclear density which appears in Eq. (65), Pt should depend
sensitively upon the behavior of the symmetry energy near nuclear density.

Link, Epstein & Lattimer [97] established a lower limit to the radius of
the Vela pulsar by using . (74) with Pt at its maximum value and the glitch
constraint ΔI/I ≥ 0.014:

R > 3.9 + 3.5M/M� − 0.08(M/M�)2 km . (75)

As shown in Fig. 22, this constraint is somewhat more stringent than one based
upon causality. Better estimates of the maximum value of Pt should make this
constraint more stringent.

7.4 Binding Energies

The binding energy formally represents the energy gained by assembling N
baryons. If the baryon mass is mb, the binding energy is simply BE = Nmb−M
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Fig. 22. Mass-radius curves for selected EOSs from Table 1, comparing theoretical
contours of ΔI/I = 0.014 from approximations developed in this paper, labelled “LP”,
and from Ravenhall & Pethick [116], labelled “RP”, to numerical results (solid dots).
Two values of Pt, the transition pressure demarking the crust’s inner boundary, which
bracket estimates in the literature, are employed. The region to the left of the Pt = 0.65
MeV fm−3 curve is forbidden if Vela glitches are due to angular momentum transfers
between the crust and core, as discussed in Link, Epstein & Lattimer [97]. For compar-
ison, the region excluded by causality alone lies to the left of the dashed curve labelled
“causality” as determined by Lattimer et al. [96] and Glendenning [117]

in mass units. However, the quantity mb has various interpretations in the lit-
erature. Some authors take it to be 939 MeV/c2, the same as the neutron or
proton mass. Others take it to be about 930 MeV/c2, corresponding to the mass
of C12/12 or Fe56/56. The latter choice would be more appropriate if BE was to
represent the energy released in by the collapse of a white-dwarf-like iron core in
a supernova explosion. The difference in these definitions, 10 MeV per baryon,
corresponds to a shift of 10/939 � 0.01 in the value of BE/M . This energy,
BE, can be deduced from neutrinos detected from a supernova event; indeed, it
might be the most precisely determined aspect of the neutrino signal.

Lattimer & Yahil [118] suggested that the binding energy could be approx-
imated as

BE ≈ 1.5 · 1051(M/M�)2 ergs = 0.084(M/M�)2 M� . (76)

Prakash et al. [4] also concluded that such a formula was a reasonable approxi-
mation, based upon a comparison of selected non-relativistic potential and field-
theoretical models, good to about ±20 %.
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However, Lattimer & Prakash [5] proposed a more accurate representation
of the binding energy:

BE/M � 0.6β/(1− 0.5β) , (77)

which incorporates some radius dependence. Thus, the observation of supernova
neutrinos, and the estimate of the total radiated neutrino energy, will yield more
accurate information about M/R than about M alone.

7.5 Outlook for Radius Determinations

Any measurement of a radius will have some intrinsic uncertainty. In addition,
the empirical relation we have determined between the pressure and radius has
a small uncertainty. It is useful to display how accurately the equation of state
might be established from an eventual radius measurement. This can be done
by inverting . (65), which yields

P (n) � [RM/C(n,M)]4 . (78)

The inferred ranges of pressures, as a function of density and for three possible
values of R1.4, are shown in the right panel of Fig. 18. It is assumed that the
mass is 1.4 M�, but the results are relatively insensitive to the actual mass. Note
from Table 3 that the differences between C for 1 and 1.4 M� are typically less
than the errors in C itself. The light shaded areas show the pressures including
only errors associated with C. The dark shaded areas show the pressures when
a hypothetical observational error of 0.5 km is also taken into account. These
results suggest that a useful restriction to the equation of state is possible if the
radius of a neutron star can be measured to an accuracy better than about 1 km.

The reason useful constraints might be obtained from just a single mea-
surement of a neutron star radius, rather than requiring a series of simultaneous
mass-radii measurements as Lindblom [119] proposed, stems from the fact that
we have been able to establish the empirical correlation, . (65). In turn, it ap-
pears that this correlation exists because most equations of state have slopes
d lnP/d lnn � 2 near ns.

8 Tasks and Prospects

There are several topics that will merit attention from theoretical and experi-
mental perspectives. Among those dealing with ν-matter interactions are:

Dynamic Structure Functions from Microscopic Calculations

Neutrino production and propagation in the hot and dense matter of interest in
astrophysics depends crucially on the excitation spectrum of the nuclear medium
to spin and spin-isospin probes. This is because, for momentum transfers small
compared to the nucleon mass, the dominant coupling of neutrinos to nucleons
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is through the weak, axial-vector current. For non-relativistic nucleons, neutral
current neutrino scattering probes the strength of the nuclear matrix elements
of the spin operator, while the charged current absorption reactions probe the
strength of the matrix elements of the spin-isospin operator. These matrix el-
ements, evaluated in the nuclear many body basis Ψ , satisfy well known sum
rules. In particular, the response function associated with the operator O(q)

SO(q0, q) =
∫ ∞

−∞
dt exp (−iqot)

〈
Ψ |O†(q) O(q)|Ψ

〉
(79)

obeys the energy weighted sum rule [59]∫ ∞

−∞
dq0 q0 SO(qo, q) =

1
2
〈
|Ψ
[[
O†(q),H

]
,O(q)

]
|Ψ
〉

(80)

whereH is the interaction Hamiltonian. The structure of the double commutator
in the above equation clearly underscores the need to better understand the role
of nuclear interactions, such as the tensor and spin-orbit interactions, that do not
conserve nucleon spin. These interactions are therefore of particular relevance to
the study of the spin and spin-isospin response of dense nuclear systems.

Friman & Maxwell [120] first emphasized the importance of tensor correla-
tions in the process

νe + n + n→ e− + p + n , (81)

and noted that their neglect underestimates the rate of νe absorption by as much
as an order of magnitude. In their study, they used a hard core description of
the short range correlations and a one pion exchange model for the medium and
long range ones. Sawyer & Soni [121] and Haensel & Jerzak [122], who used
additional correlations based on a Reid soft core potential, confirmed that large
reductions were possible in degenerate matter for non-degenerate neutrinos.

Since these earlier works, many-body calculations have vastly improved (e.g.
[11]) and have been well-tested against data on light nuclei and nuclear matter.
Much better tensor correlations are now available, so that we may better pin
down the rate of absorption due to the above process. Detailed calculations
to include arbitrary matter and neutrino degeneracies encountered in in many
astrophysical applications are necessary.

Axial Charge Renormalization

In dense matter, the axial charge of the baryons is renormalized [123,124,125],
which alters the neutrino-baryon couplings from their vacuum values. Since the
axial contribution to the scattering and absorption reactions is typically three
times larger than the vector contributions, small changes in the axial vector
coupling constants significantly affect the cross sections. The calculation of this
renormalization requires a theoretical approach which treats the pion and chiral
symmetry breaking explicitly. So far, this has been done in isospin symmetric
nuclear matter [126], but not for neutron matter or for beta-equilibrated neu-
tron star matter. Substantial reductions may be expected in the ν-matter cross
sections from this in-medium effect.
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Multi-Pair Excitations

Neutrinos can also excite many-particle states in an interacting system, inverse
bremsstrahlung being an example of a two-particle excitation [127]. These excita-
tions provide an efficient means of transferring energy between the neutrinos and
baryons which are potentially significant in low-density matter. However, multi-
group neutrino transport will be needed to include this effect. In addition, such
calculations require source terms for neutrino processes such as bremsstrahlung
and neutrino pair production. The latter process has been accurately treated
in [128].

π− and K− Dispersion Relations Through ν-Nucleus Reactions

The experimental program that would do the most to illuminate theoretical
issues permeating neutrino interactions in dense matter would be studies of
neutrino reactions on heavy nuclei, the only direct way of probing the matrix
elements of the axial current in nuclear matter. Pioneering suggestions in this
regard have been put forth by Sawyer & Soni [129,130], Ericson [131], and Sawyer
[132]. The basic idea is to detect positively charged leptons (μ+ or e+) produced
in inclusive experiments

ν̄ + X → μ+ ( or e+) + π− ( or K−) + X (82)

which is kinematically made possible when the in-medium π− or K− dispersion
relation finds support in space-like regions. The sharp peaks at forward angles
in the differential cross section versus lepton momentum survive the 100-200
MeV width in the incoming Gee or so neutrinos from accelerator experiments.
Calculations of the background from quasi-elastic reactions indicate that the
signal would be easily detectable.

ν-Matter Interactions at Sub-Nuclear Density

Analogous to the effects of inhomogeneities for ν-matter interactions discussed
in the case of a first-order kaon condensate or quark matter transition is the
case of coherent scattering of neutrinos from closely-spaced nuclei at sub-nuclear
densities. The sizes and separations of nuclei are similar to those of the droplets
discussed for the kaon and quark situations, so the range of neutrino energies
most affected will be similar. These will be important in reshaping the ν spectrum
from PNSs, and are of potential importance in the supernova mechanism itself
due to the large energy dependence of ν-matter cross sections behind the shock.

In addition to these, several topics of interest from an astrophysical per-
spective include:

Improvements in PNS Simulations

These include a) an adequate treatment of convection coupled with neutrino
transport appear to be necessary based upon large regions that are potentially
convectively unstable; b) the consideration of other softening components in
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dense matter that might produce effects dissimilar to those found when consid-
ering hyperons and kaons, i.e., quarks; c) improved transport calculations with
many energy groups, especially in the transparent regime; d) a self-consistent
treatment of accretion, which is known to significantly contribute to the early ν
emission. The latter two items necessitate the coupling of a multi-group trans-
port scheme with a hydrodynamical code of the type generally used for supernova
simulations.

Determination of the Neutron Skin of Neutron-rich Nuclei

The Jefferson Lab experiment [112] (PREX) is anticipated to yield accurate
measurements of the neutron-skin thickness of 208Pb. This quantity, from a the-
oretical viewpoint, is the volume integral of the inverse of the symmetry energy
throughout a nucleus, and represents how the nuclear symmetry energy is split
between volume and surface contributions. Not coincidentally, the density de-
pendence of the symmetry energy is also implicated in the predicted neutron
star radius [5].

Determination of the Radius of a Neutron Star

The best prospect for measuring a neutron star’s radius may be the nearby
object RX J185635-3754. Parallax information [133] indicates its distance to be
about 60 pc. In addition, it may be possible to identify spectral lines with the
Chandra and XMM X-ray facilities that would not only yield the gravitational
redshift, but would identify the atmospheric composition. Not only would this
additional information reduce the uncertainty in the deduced value of R∞, but,
both the mass and radius for this object might thereby be estimated. It is also
possible that an estimate of the surface gravity of the star can be found from
further comparisons of observations with atmospheric modelling, and this would
provide a further check on the mass and radius.
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(1999) T. Schäffer: Nucl. Phys. A 642, 45 (1998) T. Schäffer, F. Wilczek: Phys.
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Neutron Star Kicks and Asymmetric Supernovae

Dong Lai

Center for Radiophysics and Space Research, Department of Astronomy
Cornell University, Ithaca, NY 14853, USA
Email: dong@astro.cornell.edu

Abstract. Observational advances over the last decade have left little doubt that neu-
tron stars received a large kick velocity (of order a few hundred to a thousand km s−1)
at birth. The physical origin of the kicks and the related supernova asymmetry is one of
the central unsolved mysteries of supernova research. We review the physics of different
kick mechanisms, including hydrodynamically driven, neutrino – magnetic field driven,
and electromagnetically driven kicks. The viabilities of the different kick mechanisms
are directly related to the other key parameters characterizing nascent neutron stars,
such as the initial magnetic field and the initial spin. Recent observational constraints
on kick mechanisms are also discussed.

1 Evidence for Neutron Star Kicks
and Supernova Asymmetry

It has long been recognized that neutron stars (NSs) have space velocities much
greater (by about an order of magnitude) than their progenitors’. (e.g., Gunn &
Ostriker 1970). A natural explanation for such high velocities is that supernova
explosions are asymmetric, and provide kicks to the nascent NSs. In the last
few years, evidence for NS kicks and supernova asymmetry has become much
stronger. The observational facts and considerations that support (or even re-
quire) NS kicks fall into three categories:
(1) Large NS Velocities (� the progenitors’ velocities ∼ 30 km s−1):
• Recent studies of pulsar proper motion give 200− 500 km s−1 as the mean 3D
velocity of NSs at birth (e.g., Lyne and Lorimer 1994; Lorimer et al. 1997; Hansen
& Phinney 1997; Cordes & Chernoff 1998), with possibly a significant population
having velocities greater than 1000 km s−1. While velocity of ∼ 100 km s−1 may
in principle come from binary breakup in a supernova (without kick), higher
velocities would require exceedingly tight presupernova binary. Statistical anal-
ysis seems to favor a bimodal pulsar velocity distribution, with peaks around
100 km s−1 and 500 km s−1 (Arzoumanian et al. 2001; see also Hansen & Phin-
ney 1997; Cordes & Chernoff 1998).
• Direct evidence for pulsar velocities >∼1000 km s−1 has come from observations
of the bow shock produced by the Guitar Nebula pulsar (B2224+65) in the
interstellar medium (Cordes, Romani & Lundgren 1993).
• The studies of neutron star – supernova remnant associations have, in many
cases, indicated large NS velocities (e.g., Frail et al. 1994), although identifying
the association can be tricky sometimes (e.g. Kaspi 1999; Gaensler 2000). Of spe-
cial interest is the recent studies of magnetar–SNR associations: the SGR 0526-66
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- N49 association, implying V⊥ ∼ 2900 (3 kyr/t) km s−1, and the possible associ-
ation of SGR 1900+14 with G42.8+0.6, implying V⊥ ∼ 1800 (10 kyr/t) km s−1.
(However, the proper motion of SGR 1806-20 may be as small as 100 km s−1,
and AXP 1E2259+586, AXJ 1845-0258, and AXP 1E1841-045 lie close to the
centers of their respective remnants, CTB 109, G29.6+0.1, and Kes 73) (see
Gaensler 2000).
(2) Characteristics of NS Binaries (Individual Systems and Popula-
tions): While large space velocities can in principle be accounted for by binary
break-up (as originally suggested by Gott et al. 1970; see Iben & Tutukov 1996),
many observed characteristics of NS binaries demonstrate that binary break-up
can not be solely responsible for pulsar velocities, and that kicks are required
(see also Tauris & van den Heuvel 2000). Examples include:
• The detection of geodetic precession in binary pulsar PSR 1913+16 implies
that the pulsar’s spin is misaligned with the orbital angular momentum; this can
result from the aligned pulsar-He star progenitor only if the explosion of the He
star gave a kick to the NS that misalign the orbit (Cordes et al. 1990; Kramer
1998; Wex et al. 1999).
• The spin-orbit misalignment in PSR J0045-7319/B-star binary, as manifested
by the orbital plane precession (Kaspi et al. 1996; Lai et al. 1995) and fast orbital
decay (which indicates retrograde rotation of the B star with respect to the orbit;
Lai 1996a) require that the NS received a kick at birth (see Lai 1996b).
• The observed system radial velocity (430 km s−1) of X-ray binary Circinus X-1
requires Vkick >∼ 500 km s−1 (Tauris et al. 1999).
• High eccentricities of Be/X-ray binaries cannot be explained without kicks
(Verbunt & van den Heuvel 1995).
• Evolutionary studies of NS binary population (in particular the double NS
systems) imply the existence of pulsar kicks (e.g., Deway & Cordes 1987; Fryer
& Kalogera 1997; Fryer et al. 1998).
(3) Observations of SNe and SNRs: There are many direct observations
of nearby supernovae (e.g., spectropolarimetry: Wang et al. 2000, Leonard
et al. 2000; X-ray and gamma-ray observations and emission line profiles of
SN1987A: McCray 1993, Utrobin et al. 1995) and supernova remnants (e.g.,
Morse, Winkler & Kirshner 1995; Aschenbach et al. 1995) which support the
notion that supernova explosions are not spherically symmetric.

Finally it is of interest to note that recent study of the past association of
the runaway star ζ Oph with PSR J1932+1059 (Hoogerwerf et al. 2000) or with
RX 185635-3754 (Walter 2000) also implies a kick to the NS.

2 The Problem of Core-Collapse Supernovae
and Neutron Star Kicks

The current paradigm for core-collapse supernovae leading to NS formation is
that these supernovae are neutrino-driven (see Burrows 2000, Janka 2000 for
recent review): As the central core of a massive star collapses to nuclear density,
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it rebounds and sends off a shock wave, leaving behind a proto-neutron star. The
shock stalls at several 100’s km because of neutrino loss and nuclear dissociation
in the shock. A fraction of the neutrinos emitted from the proto-neutron star
get absorbed by nucleons behind the shock, thus reviving the shock, leading to
an explosion on the timescale several 100’s ms — This is the so-called “Delayed
Mechanism”. However, 1D simulations with detailed neutrino transport seem
to indicate that neutrino heating of the stalled shock, by itself, does not lead
to an explosion or produce the observed supernova energetics (see Rampp &
Janka 2000). It has been argued that neutrino-driven convection in the proto-
neutron star (which tends to increase the neutrino flux) and that in the shocked
mantle (which tends to increase the neutrino heating efficiency) are central to the
explosion mechanism, although there is no consensus on the robustness of these
convections (e.g., Herant et al. 1994; Burrows et al. 1995; Janka & Müller 1996;
Mezzacappa et al. 1998). What is even more uncertain is the role of rotation and
magnetic field on the explosion (see Mönchmeyer et al. 1991; Rampp, Müller
& Ruffert 1998; Khokhlov et al. 1999; Fryer & Heger 2000 for simulations of
collapse/explosion with rotation, and Thompson & Duncan 1993 and Thompson
2000a for discussion of possible dynamo processes and magnetic effects).

It is clear that despite decades of theoretical investigations, our understand-
ing of the physical mechanisms of core-collapse supernovae remains significantly
incomplete. The prevalence of neutron star kicks poses a significant mystery, and
indicates that large-scale, global deviation from spherical symmetry is an impor-
tant ingredient in our understanding of core-collapse supernovae (see Burrows
2000).

In the following sections, we review different classes of physical mechanisms
for generating NS kicks (§§3-5), and then discuss possible observational con-
straints and astrophysical implications (§6).

3 Hydrodynamically Driven Kicks

The collapsed stellar core and its surrounding mantle are susceptible to a variety
of hydrodynamical (convective) instabilities (e.g., Herant et al. 1994; Burrows
et al. 1995; Janka & Müller 1996; Keil et al. 1996; Mezzacappa et al. 1998).
It is natural to expect that the asymmetries in the density, temperature and
velocity distributions associated with the instabilities can lead to asymmetric
matter ejection and/or asymmetric neutrino emission. Numerical simulations,
however, indicate that the local, post-collapse instabilities are not adequate to
account for kick velocities >∼100 km s−1 (Janka & Müller 1994; Burrows & Hayes
1996; Janka 1998; Keil 1998) — These simulations were done in 2D, and it is
expected that the flow will be smoother on large scale in 3D simulations, and
the resulting kick velocity will be even smaller.

There is now a consensus that global asymmetric perturbations in presuper-
nova cores are required to produce the observed kicks hydrodynamically (Gol-
dreich, Lai & Sahrling 1996; Burrows & Hayes 1996). Numerical simulations
by Burrows & Hayes (1996) demonstrate that if the precollapse core is mildly
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asymmetric, the newly formed NS can receive a kick velocity comparable to
the observed values. (In one simulation, the density of the collapsing core ex-
terior to 0.9M� and within 200 of the pole is artificially reduced by 20%, and
the resulting kick is about 500 km s−1.) Asymmetric motion of the exploding
material (since the shock tends to propagate more “easily” through the low-
density region) dominates the kick, although there is also contribution (about
10 − 20%) from asymmetric neutrino emission. The magnitude of kick velocity
is proportional to the degree of initial asymmetry in the imploding core. Thus
the important question is: What is the origin of the initial asymmetry?

3.1 Presupernova Perturbations

Goldreich et al. (1996) suggested that overstable g-mode oscillations in the pre-
supernova core may provide a natural seed for the initial asymmetry. These
overstable g-modes arise as follows. A few hours prior to core collapse, a massive
star (M >∼ 8M�) has gone through a successive stages of nuclear burning, and
attained a configuration with a degenerate iron core overlaid by an “onion skin”
mantle of lighter elements. The rapidly growing iron core is encased in and fed
by shells of burning silicon and oxygen, and the entire assemblage is surrounded
by a thick convection zone. The nearly isothermal core is stably stratified and
supports internal gravity waves. These waves cannot propagate in the unstably
stratified convection zone, hence they are trapped and give rise to core g-modes
in which the core oscillates with respect to the outer parts of the star. The over-
stability of the g-mode is due to the “ε-mechanism” with driving provided by
temperature sensitive nuclear burning in Si and O shells surrounding the core
before it implodes. It is simplest to see this by considering a l = 1 mode: If we
perturb the core to the right, the right-hand-side of the shell will be compressed,
resulting in an increase in temperature; Since the shell nuclear burning rate
depends sensitively on temperature (power-law index ∼ 47 for Si burning and
∼ 33 for O burning), the nuclear burning is greatly enhanced; this generates a
large local pressure, pushing the core back to the left. The result is an oscillating
g-mode with increasing amplitude.

The main damping mechanism comes from the leakage of mode energy. The
local (WKB) dispersion relation for nonradial waves is

k2
r = (ω2c2s)

−1(ω2 − L2
l )(ω

2 −N2), (1)

where kr is the radial wavenumber, Ll =
√

l(l + 1)cs/r (cs is the sound speed)
and N are the acoustic cut-off (Lamb) frequency and the Brunt-Väisälä fre-
quency, respectively. Since acoustic waves whose frequencies lie above the acous-
tic cutoff can propagate through convective regions, each core g-mode will couple
to an outgoing acoustic wave, which drains energy from the core g-modes (see
Fig. 1). This leakage of mode energy can be handled with an outgoing propaga-
tion boundary condition in the mode calculation. Also, neutrino cooling tends to
damp the mode. Since the nuclear energy generation rate depends more sensi-
tively on temperature than pair neutrino emission (power law index ∼ 9), cooling



428 D. Lai

Fig. 1. Propagation diagram computed for a 15M� presupernova model of Weaver and
Woosley (1993). The solid curve shows N2, where N is the Brunt-Väisälä frequency;
the dashed curves show L2

l , where Ll is the acoustic cutoff frequency, with l = 1, 2, 3.
The spikes in N2 result from discontinuities in entropy and composition. The iron core
boundary is located at 1.3M�, the mass-cut at 1.42M�. Convective regions correspond
to N = 0. Gravity modes (with mode frequency ω) propagate in regions where ω < N
and ω < Ll, while pressure modes propagate in regions where ω > N and ω > Ll. Note
that a g-mode trapped in the core can lose energy by penetrating the evanescent zones
and turning into an outgoing acoustic wave (see the horizontal line). Also note that
g-modes with higher n (the radial order) and l (the angular degree) are better trapped
in the core than those with lower n and l.

is never comparable to nuclear heating locally. Instead, thermal balance is me-
diated by the convective transport of energy from the shells, where the rate of
nuclear energy generation exceeds that of neutrino energy emission, to the cooler
surroundings where the bulk of the neutrino emission takes place. Calculations
(based on the 15M� and 25M� presupernova models of Weaver & Woosley 1993)
indicate that a large number of g-modes are overstable, although for low-order
modes (small l and n) the results depend sensitively on the detailed structure
and burning rates of the presupernova models. The typical mode periods are
>∼1 s, the growth time ∼ 10− 50 s, and the lifetime of the Si shell burning is ∼
hours (Lai & Goldreich 2000b, in preparation).

Our tentative conclusion is that overstable g-modes can potentially grow to
large amplitudes prior to core implosion, although a complete understanding of
the global pre-collapse asymmetries is probably out of reach at present, given the
various uncertainties in the presupernova models. For example, the O-Si burning
shell is highly convective, with convective speed reaching 1/4 of the sound speed,
and hydrodynamical simulation may be needed to properly modeled such con-
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vection zones (see Bazan & Arnett 1998, Asida & Arnett 2000). Alternatively, it
has been suggested that the convection itself may provide the seed of asymmetry
in the presupernova core (Bazan & Arnett 1998), although it is not clear whether
the perturbations have sufficiently large scales to be relevant to supernova kicks.

3.2 Amplification of Perturbation During Core Collapse

Core collapse proceeds in a self-similar fashion, with the inner core shrinking sub-
sonically and the outer core falling supersonically at about half free-fall speed
(Yahil 1983). The inner core is stable to non-radial perturbations because of the
significant role played by pressure in its subsonic collapse. Pressure is less im-
portant in the outer region, making it more susceptible to large scale instability.
A recent stability analysis of Yahil’s self-similar collapse solution (which is based
on Newtonian theory and a polytropic equation of state P ∝ ρΓ , with Γ ∼ 1.3)
does not reveal any unstable global mode before the proto-neutron star forms
(Hanawa & Matsumoto 2000; Lai 2000). However, during the subsequent accre-
tion of the outer core (involving 15% of the core mass) and envelope onto the
proto-neutron star, nonspherical Lagrangian perturbations can grow according
to Δρ/ρ ∝ r−1/2 (independent of l) or even Δρ/ρ ∝ r−1 (for l = 1 when the
central collapsed object is displaced from the origin of the converging flow) (Lai
& Goldreich 2000) The asymmetric density perturbations seeded in the presu-
pernova star, especially those in the outer region of the iron core, are therefore
amplified (by a factor of 5-10) during collapse. The enhanced asymmetric density
perturbation may lead to asymmetric shock propagation and breakout, which
then give rise to asymmetry in the explosion and a kick velocity to the NS (see
Burrows & Hayes 1996).

4 Neutrino – Magnetic Field Driven Kicks

The second class of kick mechanisms rely on asymmetric neutrino emission in-
duced by strong magnetic fields. Since 99% of the NS binding energy (a few times
1053 erg) is released in neutrinos, tapping the neutrino energy would appear to
be an efficient means to kick the newly-formed NS. The fractional asymmetry
α in the radiated neutrino energy required to generate a kick velocity Vkick is
α = MVkickc/Etot (= 0.028 for Vkick = 1000 km s−1, NS mass M = 1.4M� and
total neutrino energy radiated Etot = 3× 1053 erg).

4.1 Effect of Parity Violation

Because weak interaction is parity violating, the neutrino opacities and emissiv-
ities in a magnetized nuclear medium depend asymmetrically on the directions
of neutrino momenta with respect to the magnetic field, and this can give rise to
asymmetric neutrino emission from the proto-neutron star. Chugai (1984) (who
gave an incorrect expression for the electron polarization in the relativistic, de-
generate regime) and Vilenkin (1995) considered neutrino-electron scattering,
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but this is less important than neutrino-nucleon scattering in determining neu-
trino transport in proto-neutron stars. Dorofeev et al. (1985) considered neutrino
emission by Urca processes, but failed to recognize that in the bulk interior of
the star the asymmetry in neutrino emission is cancelled by that associated with
neutrino absorption (Lai & Qian 1998a).

Horowitz & Li (1998) suggested that large asymmetries in the neutrino flux
could result from the cumulative effect of multiple scatterings of neutrinos by
slightly polarized nucleons (see also Lai & Qian 1998a; Janka 1998). However,
it can be shown that, although the scattering cross-section is asymmetric with
respect to the magnetic field for individual neutrinos, detailed balance requires
that there be no cumulative effect associated with multiple scatterings in the
bulk interior of the star where thermal equilibrium is maintained to a good
approximation (Arras & Lai 1999a; see also Kusenko et al. 1998). For a given
neutrino species, there is a drift flux of neutrinos along the magnetic field in
addition to the usual diffusive flux. This drift flux depends on the deviation of
the neutrino distribution function from thermal equilibrium. Thus asymmetric
neutrino flux can be generated in the outer region of the proto-neutron star
(i.e., above the neutrino-matter decoupling layer, but below the neutrinosphere)
where the neutrino distribution deviates significantly from thermal equilibrium.
While the drift flux associated with νμ’s and ντ ’s is exactly canceled by that
associated with ν̄μ’s and ν̄τ ’s, there is a net drift flux due to νe’s and ν̄e’s.
Arras & Lai (1999b) found that the asymmetry parameter for the νe-ν̄e flux is
dominated for low energy neutrinos (<∼15 MeV) by the effect of ground (Landau)
state electrons in the absorption opacity, εabs � 0.6B15(Eν/1 MeV)−2, where
B15 = B/(1015 G), and for high energy neutrinos by nucleon polarization (ε ∼
μmB/T ). Averaging over all neutrino species, the total asymmetry in neutrino
flux is of order α ∼ 0.2εabs, and the resulting kick velocity Vkick ∼ 50B15 km s−1.
There is probably a factor of 5 uncertainty in this estimate. To firm up this
estimate requires solving the neutrino transport equations in the presence of
parity violation for realistic proto-neutron stars.

4.2 Effect of Asymmetric Field Topology

A different kick mechanism relies on the asymmetric magnetic field distribu-
tion in proto-neutron stars (see Bisnovatyi-Kogan 1993; however, he considered
neutron decay, which is not directly relevant for neutrino emission from proto-
neutron stars). Since the cross section for νe (ν̄e) absorption on neutrons (pro-
tons) depends on the local magnetic field strength due to the quantization of
energy levels for the e− (e+) produced in the final state, the local neutrino fluxes
emerged from different regions of the stellar surface are different. Calculations
indicate that to generate a kick velocity of ∼ 300 km s−1 using this mechanism
alone would require that the difference in the field strengths at the two opposite
poles of the star be at least 1016 G (Lai & Qian 1998b). Note that unlike the kick
due to parity violation (see §4.1), this mechanism does not require the magnetic
field to be ordered, i.e., only the magnitude of the field matters.
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4.3 Dynamical Effect of Magnetic Fields

A superstrong magnetic field may also play a dynamical role in the proto-neutron
star. For example, it has been suggested that a locally strong magnetic field can
induce “dark spots” (where the neutrino flux is lower than average) on the stellar
surface by suppressing neutrino-driven convection (Duncan & Thompson 1992).
While it is difficult to quantify the kick velocity resulting from an asymmetric
distribution of dark spots, order-of-magnitude estimate indicates that a local
magnetic field of at least 1015 G is needed for this effect to be of importance.
Much work remains to be done to quantify the magnetic effects (especially when
coupled with rotation) on the dynamics of the proto-neutron star and the super-
nova explosion (see, e.g., LeBlanc & Wilson 1970; Thompson & Duncan 1993).

4.4 Exotic Neutrino Physics

There have also been several ideas of pulsar kicks which rely on nonstandard
neutrino physics. It was suggested (Kusenko & Segre 1996) that asymmetric ντ

emission could result from the Mikheyev-Smirnov-Wolfenstein flavor transforma-
tion between ντ and νe inside a magnetized proto-neutron star because a mag-
netic field changes the resonance condition for the flavor transformation. This
mechanism requires neutrino mass of order 100 eV. A similar idea (Akhmedov et
al. 1997) relies on both the neutrino mass and the neutrino magnetic moment to
facilitate the flavor transformation (resonant neutrino spin-flavor precession; see
also Grasso et al. 1998). More detailed analysis of neutrino transport (Janka &
Raffelt 1998), however, indicates that even with favorable neutrino parameters
(such as mass and magnetic moment) for neutrino oscillation, the induced pulsar
kick is much smaller than previously estimated (i.e., B � 1015 G is required to
obtain a 100 km s−1 kick).

It is clear that all the kick mechanisms discussed in this section (§4) are of
relevance only for B >∼ 1015 G. While recent observations have lent strong sup-
port that some neutron stars (“magnetars”) are born with such a superstrong
magnetic field (e.g., Thompson & Duncan 1993; Vasisht & Gotthelf 1997; Kou-
veliotou et al. 1998,1999; Thompson 2000b), it is not clear (perhaps unlikely)
that ordinary radio pulsars (for which large velocities have been measured) had
initial magnetic fields of such magnitude (see als §6).

5 Electromagnetically Driven Kicks

Harrison & Tademaru (1975) show that electromagnetic (EM) radiation from
an off-centered rotating magnetic dipole imparts a kick to the pulsar along its
spin axis. The kick is attained on the initial spindown timescale of the pulsar
(i.e., this really is a gradual acceleration), and comes at the expense of the spin
kinetic energy. We (Lai, Chernoff & Cordes 2001) have reexamined this effect
and found that the force on the pulsar due to asymmetric EM radiation is larger
than the original Harrison & Tademaru expression by a factor of four. If the
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dipole is displaced by a distance s from the rotation axis, and has components
μρ, μφ, μz (in cylindrical coordinates), the force is given by (to leading order in
Ωs/c)

F =
8
15

(
Ωs

c

)
Ω4μzμφ

c4
. (2)

(The sign is such that negative F implies Vkick parallel to the spin Ω.) The
dominant terms for the spindown luminosity give

L =
2Ω4

3c3

(
μ2

ρ + μ2
φ +

2Ω2s2μ2
z

5c2

)
. (3)

For a “typical” situation, μρ ∼ μφ ∼ μz, the asymmetry parameter ε ≡
F/(L/c) is of order 0.4(Ωs/c). For a given Ω, the maximum εmax =

√
0.4 = 0.63

is achieved for μρ/μz = 0 and μφ/μz =
√

0.4 (Ωs/c). From MV̇ = ε(L/c) =
−ε(IΩΩ̇)/c, we obtain the kick velocity
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]

km s−1, (4)

where R = 10R10 km is the neutron star radius, νi is the initial spin frequency,
ν is the current spin frequency of the pulsar, and ε̄ = (Ω2

i − Ω2)−1
∫
ε dΩ2.

For the “optimal” condition, with μρ = 0, μφ/μz =
√

0.4 (Ωis/c), and ε =√
0.4

[
2ΩiΩ/(Ω2 + Ω2
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]
, we find

V
(max)
kick � 1400R2
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)2
km s−1. (5)

Thus, if the NS was born rotating at νi
>∼ 1 kHz, it is possible, in principle, to

generate spin-aligned kick of a few hundreds km s−1 or even 1000 km s−1.
Equations (4) and (5) assume that the rotational energy of the pulsar en-

tirely goes to electromagnetic radiation. Recent work has shown that a rapidly
rotating (ν >∼ 100 Hz) NS can potentially lose significant angular momentum to
gravitational waves generated by unstable r-mode oscillations (e.g., Andersson
1998; Lindblom, Owen & Morsink 1998; Owen et al. 1998; Andersson, Kokko-
tas & Schutz 1999; Ho & Lai 2000). If gravitational radiation carries away the
rotational energy of the NS faster than the EM radiation does, then the electro-
magnetic rocket effect will be much diminished (Gravitational radiation can also
carry away linear momentum, but the effect for a NS is negligible). In the linear
regime, the r-mode amplitude α ∼ ξ/R (where ξ is the surface Lagrangian dis-
placement; see the references cited above for more precise definition of α) grows
due to gravitational radiation reaction on a timescale tgrow � 19 (ν/1 kHz)−6 s.
Starting from an initial amplitude αi 	 1, the mode grows to a saturation level
αsat in time tgrow ln(αsat/αi) during which very little rotational energy is lost.
After saturation, the NS spins down due to gravitational radiation on a timescale

τGR =
∣∣∣ν
ν̇

∣∣∣
GR
� 100α−2

sat

( ν

1 kHz

)−6
s, (6)
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(Owen et al. 1998). By contrast, the spindown time due to EM radiation alone
is

τEM =
∣∣∣ν
ν̇

∣∣∣
EM

� 107 B−2
13

( ν

1 kHz

)−2
s, (7)

where B13 is the surface dipole magnetic field in units of 1013 G. Including
gravitational radiation, the kick velocity becomes

Vkick � 260R2
10

( ε̄
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)2 1
β
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[
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1 + β (ν/νi)2

]
km s−1, (8)

where in the second equality we have replaced ε by constant mean value ε̄, and
β is defined by

β ≡
(
τEM

τGR

)
i

�
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)4
B−2

13 . (9)

For β 	 1, equation (8) becomes eq. (4); for β � 1, the kick is reduced by a
factor 1/β.

Clearly, for the EM rocket to be viable as a kick mechanism at all requires
β<∼1. The value of αsat is unknown. Analogy with secularly unstable bar-mode in
a Maclaurin spheroid implies that αsat ∼ 1 is possible (e.g., Lai & Shapiro 1995).
It has been suggested that turbulent dissipation in the boundary layer near the
crust (if it exists early in the NS’s history) may limit αsat to a small value of
order 10−2-10−3 (Wu, Matzner & Arras 2000). The theoretical situation is not
clear at this point (see Lindblom et al. 2000 for recent simulations of nonlinear
r-modes).

6 Astrophysical Constraints on Kick Mechanisms

In §§3-5 we have focused on the physics of different kick mechanisms. All these
mechanisms still have intrinsic physics uncertainties and require more theoretical
work. For example:

(1) For the hydrodynamical driven kicks, one needs to better understand
the structure of pre-SN core in order to determine whether overstable g-modes
can grow to large amplitudes; more simulation would be useful to pin down the
precise relationship between the magnitudes of the initial asymmetry and the
kick velocity;

(2) For the neutrino–magnetic field driven kicks, more elaborate neutrino
transport calculation is necessary to determine (to within a factor of 2) the value
of B needed to generate (say) Vkick = 300 km s−1;

(3) For the electromagnetically driven kicks, the effect of gravitational ra-
diation (especially the r-mode amplitude) needs to be better understood.

We now discuss some of the astrophysical/observational constraints on the
kick mechanisms.
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6.1 Initial Magnetic Field of NS

The neutrino-magnetic field driven kicks (§4) require initial B>∼1015 G to be of in-
terest. While magnetars may have such superstrong magnetic fields at birth (e.g.,
Thompson & Duncan 1993; Kouveliotou et al. 1998,1999; Thompson 2000b), the
situation is not clear for ordinary radio pulsars, whose currently measured mag-
netic fields are of order 1012 G. It is difficult for an initial large-scale 1015 G to
decay (via Ohmic diffusion or ambipolar diffusion) to the canonical 1012 G on the
relevant timescale of 103−107 years. However, one cannot rule out the possibility
that in the proto-neutron star phase, a convection-initiated dynamo generates a
“transient” superstrong magnetic field, lasting a few seconds, and then the field
gets destroyed by “anti-dynamo” as the convection ceases. Obviously if we can
be sure that this is not possible, then we can discard the mechanisms discussed
in §4.

6.2 Initial Spin of NS

To produce sufficient velocity, the electromagnetic rocket effect (§5) requires
the NS initial spin period Pi to be less than 1 − 2 ms. It is widely thought
that radio pulsars are not born with such a rapid spin, but rather with a more
modest Pi = 0.02 − 0.5 s (e.g., Lorimer et al. 1993). The strongest argument
for this comes for the energetics of pulsar nebulae (particularly Crab). But this
is not without uncertainties. For example, a recent analysis of the energetics of
the Crab Nebula suggests an initial spin period ∼ 3 − 5 ms followed by fast
spindown on a time scale of 30 yr (Atoyan 1999). As for the Vela pulsar, the
energetics of the remnant do not yield an unambiguous constraint on the initial
spin. Also, the recent discovery of the 16 ms X-ray pulsar (PSR J0537-6910)
associated with the Crab-like supernova remnant N157B (Marshall et al. 1998)
in the Large Magellanic Cloud implies that at least some NSs are born with spin
periods in the millisecond range. So at this point it may be prudent to consider
Pi ∼ 1 ms as a possibility (see also §6.5).

6.3 Natal vs. Post-Natal Kicks

There is a qualitative difference between natal kicks (including the hydrody-
namical driven and neutrino–magnetic field driven kicks) and post-natal kicks.
Because it is a slow process, the Harrison-Tademaru effect may have difficulty
in explaining some of the characteristics of NS binaries (even if the physics
issues discussed in §5 work out to give a large Vkick), such as the spin-orbit mis-
alignment in PSR J0045-7319 (Kaspi et al. 1996) and PSR 1913+16 needed to
produce the observed precessions. For example, in the case of PSR J0045-7319
– B star binary: if we assume that the orbital angular momentum of the presu-
pernova binary is aligned with the spin of the B star, then the current spin-orbit
misalignment can only be explained by a fast kick with τkick less than the post-
explosion orbital period Porb. Similarly, a slow kick (with τkick >∼ Porb) may be
inconsistent with the NS binary populations (e.g., Dewey & Cordes 1987; Fryer
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& Kalogera 1997; Fryer et al. 1998). However, note that τkick ∼ τEM for the
Harrison-Tademaru effect depends on value of B [see eq. (7)], thus can be made
much smaller than Porb (which typically ranges from hours to several months or
a few years at most for relevant binaries) if B is large.

6.4 Correlations Between Velocity and Other Properties of NS?

Despite some earlier claims to the contrary, statistical studies of pulsar popula-
tion have revealed no correlation between Vkick and magnetic field strength, or
correlation between the kick direction and the spin axis (e.g., Cordes & Chernoff
1998; Deshpande et al. 1999). Given the large systematic uncertainties, the sta-
tistical results, by themselves, cannot reliably constrain any kick mechanism. For
example, the magnetic field strengths required for the neutrino-driven mecha-
nisms are >∼1015 G, much larger than the currently inferred dipolar surface fields
of typical radio pulsars; there are large uncertainties in using the polarization
angle to determine the pulsar spin axis; differential galactic rotation is impor-
tant for distant NSs and cannot be accounted for unless the distance is known
accurately and the NS has not moved far from its birth location; several differ-
ent mechanisms (including binary breakup) may contribute to the observed NS
velocities (see Lai, Chernoff & Cordes 2001).

Recent observations of the Vela pulsar and the surrounding compact X-ray
nebula with the Chandra X-ray Observatory reveal a two sided asymmetric jet
at a position angle coinciding with the position angle of the pulsar’s proper
motion (Pavlov et al. 2000; see http://chandra.harvard.edu/photo/cycle1/vela/
for image) The symmetric morphology of the nebula with respect to the jet
direction strongly suggests that the jet is along the pulsar’s spin axis. Analysis
of the polarization angle of Vela’s radio emission corroborates this interpretation.
Similar evidence for spin-velocity alignment also exists for the Crab pulsar. Thus,
while statistical analysis of pulsar population neither support nor rule out any
spin-kick correlation, at least for the Vela and Crab pulsars, the proper motion
and the spin axis appear to be aligned. Interestingly, both Crab and Vela pulsars
have relatively small transverse velocities (of order 100 km s−1).

6.5 The Effect of Rotation and Spin-Kick Alignment?

The apparent alignment between the spin axis and proper motion for the Crab
and Vela pulsar raises an interesting question: Under what conditions is the spin-
kick alignment expected for different kick mechanisms? Let us look at the three
classes of mechanisms discussed in §§3-5 (see Lai, Chernoff & Cordes 2001).

(1) Electromagnetically Driven Kicks: The spin-kick slignment is naturally
produced. (Again, note that Pi ∼ 1 − 2 ms is required to generate sufficiently
large Vkick).

(2) Neutrino–Magnetic Field Driven Kicks: The kick is imparted to the NS
near the neutrinosphere (at 10’s of km) on the neutrino diffusion time, τkick ∼
10 seconds. As long as the initial spin period Pi is much less than a few seconds,
spin-kick alignment is naturally expected.
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(3) Hydrodynamically Driven Kicks: The low-order g-modes trapped in the
presupernova core (M � 1.4M�, R � 1500 km) have periods of 1-2 seconds,
much shorter than the rotation period of the core (unless the core possesses a
dynamically important angular momentum after collapse), thus the g-modes are
not affected by rotation. Also, since the rotational speed of the core is typically
less than the speed of convective eddies (�1000-2000 km s−1, about 20% of the
sound speed) in the burning shell surrounding the iron core, rotation should not
significantly affect the shell convection either. Thus the development of large-
scale presupernova (dipolar) asymmetry is not influenced by the core rotation.
But even though the primary thrust to the NS (upon core collapse) does not
depend on spin, the net kick will be affected by rotational averaging if the asym-
metry pattern (near the shock breakout) rotates with the matter at a period
shorter than the kick timescale τkick. Here the situation is more complicated be-
cause the primary kick to the NS is imparted at a large radius, rshock >∼ 100 km
(since this the location of the stalled shock). To obtain effective spin averaging,
we require the rotation period at rshock to be shorter than τkick ∼ 100 ms (this
τkick is the shock travel time at speed of 104 km s−1 across ∼ 1000 km, the radius
of the mass cut enclosing 1.4M�). Assuming angular momentum conservation,
this translates into the requirement that the final NS spin period Pi

<∼ 1 ms. We
thus conclude that if rotation is dynamically unimportant for the core collapse
and explosion (corresponding to Ps � 1 ms), then rotational averaging is ineffi-
cient and the hydrodynamical mechanism does not produce spin-kick alignment.

The discussion above is based on the standard picture of core-collapse su-
pernovae, which is valid as long as rotation does not play a dynamically impor-
tant role (other than rotational averaging) in the supernova. If, on the other
hand, rotation is dynamically important, the basic collapse and explosion may
be qualitatively different (e.g., core bounce may occur at subnuclear density, the
explosion is weaker and takes the form of two-sided jets; see Mönchmeyer et
al. 1991; Rampp, Müller & Ruffert 1998; Khokhlov et al. 1999). The possibility
of a kick in such systems has not been studied, but it is conceivable that an
asymmetric dipolar perturbation may be coupled to rotation, thus producing
spin-kick alignment.

It has been suggested that the presupernova core has negligible angular
momentum and the pulsar spin may be generated by off-centered kicks when
the NS forms (Spruit & Phinney 1998). It is certainly true that even with zero
precollapse angular momentum, some rotation can be produced in the proto-
neutron star (Burrows et al. 1995 reported a rotation period of order a second
generated by stochastic torques in their 2D simulations of supernova explosions),
although Pi

<∼30 ms seems difficult to get. In this picture, the spin will generally
be perpendicular to the velocity; aligned spin-kick may be possible if the kick
is the result of many small thrusts which are appropriately oriented (Spruit &
Phinney 1998) — this might apply if small-scale convection were responsible
for the kick. But as discussed in §3, numerical simulations indicate that such
convection alone does not produce kicks of sufficient amplitude. Therefore, spin-
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kick alignment requires that the proto-neutron star have a “primordial” rotation
(i.e., with angular momentum coming from the presupernova core).

Clearly, if spin-kick alignment is a generic feature for all NSs, it can provide
strong constraints on the kick mechanisms, supernova explosion mechanisms, as
well as initial conditions of NSs.
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Abstract. The thermal, spin and magnetic evolution of neutron stars in the old low
mass binaries is first explored. Recycled to very short periods via accretion torques, the
neutron stars lose their magnetism progressively. If accretion proceeds undisturbed for
100 Myrs these stars can rotate close to break up with periods far below the minimum
observed of 1.558 ms. We investigate their histories using population synthesis models
to show that a tail should exist in the period distribution below 1.558 ms. The search
of these ultrafastly spinning neutron stars as pulsars can help discriminating among
the various equations of state for nuclear matter, and can shed light into the physics
of binary evolution. The evolution of isolated neutron stars in the Galaxy is explored
beyond the pulsar phase. Moving through the tenuous interstellar medium, these old
solitary neutron stars lose their rotational energy. Whether also their magnetism fades
is still a mystery. A population synthesis model has revealed that only a tiny fraction
of them is able to accrete from the interstellar medium, shining in the X-rays. There is
the hope that these solitary stars will eventually appear as faint sources in the Chandra
sky survey. This might give insight on the long term evolution of the magnetic field in
isolated objects.

1 Introduction

The amount of rotation and the strength of the magnetic field determine many
of the neutron star’s observational properties. Over the neutron star lifetime, the
spin and the field change and the study of their evolution provides important
clues into the physics of the stellar interior.

Of the billion neutron stars in the Galaxy, we shall be mainly concerned
with the evolution of two distinct populations: The millisecond pulsars and the
isolated neutron stars both aging, the first in low-mass binaries, the second as
field stars moving in the interstellar medium of our Milky Way. We will show
that the interaction with their surroundings may profoundly alter their spin
and magnetic field. The extent of these changes and the modes vary in the two
scenarios. It is in exploring this diversity that we wish to infer the nature of
the equation of state and to provide a unified view of field decay. In particular,
the existence of ”unconventional” sources, such as sub-millisecond pulsars, stars
rotating close to their break up limit, and as solitary neutron stars accreting
the interstellar medium, is a crucial test for our studies. Their discovery is an
observational and theoretical challenge.

In Section 2 we trace the evolution of a neutron star in the Ejector, Propeller
and Accretion phases, described briefly using simple background arguments.
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Section 3 surveys the physical models for the evolution of the magnetic field both
in isolated and accreting systems. In Section 4 we explore possible individual
pathways that may lead to the formation, in low mass binaries, of neutron stars
spinning very close to their mass shedding threshold, a limit sensitive to the
equation of state for nuclear matter. Pathways of isolated neutron stars follow.
The first four sections set the general background used to construct, in Sections
5 and 6, statistical models aimed at determining the presence and abundance of
sub-millisecond pulsars in the Galaxy, and of solitary neutron stars shining in
the X-rays. Specifically, in Section 5 we explore, within the recycling scenario,
the star’s spin and magnetic evolution using physical models and the role played
by disc instabilities in affecting the latest phases of binary evolution toward the
Ejector state of sub-millisecond pulsars. In Section 6 we carry out the first stellar
census. We then establish how elusive neutron stars can be as accreting sources
from the interstellar medium due to their large velocities and to magnetic field
decay.

2 The Ejector, Propeller and Accretion Phases

Over the stellar lifetime, magnetic and hydrodynamic torques acting on the
neutron star (NS hereafter) induce secular changes in its spin rate. Four physical
parameters determine the extent of the torques: the magnetic field strength B,
the rotational period P, the density of the surrounding (interstellar) medium
n, and the rate of mass inflow Ṁ toward the NS. According to the magnitude
of these quantities, a NS experiences three different evolutionary paths: Ejector
(E), Propeller (P), and Accretion (A) [1]. In phase E the NS braking results
from the loss of magneto-dipole radiation as in an ordinary pulsar. The implied
spin-down rate is

dP

dt
=

2π2

c3I

μ2

P
, (1)

where I is the NS moment of inertia and μ = BsR
3
s/2 the NS magnetic mo-

ment, function of the stellar radius Rs and polar magnetic field Bs. The torque
decreases with increasing P , and at the current period P (much longer than the
initial period) the time spent in phase E is

τE =
c3 I P 2

4π2 μ2 . (2)

Resulting from the emission of electromagnetic waves and charged particles,
the rotational energy loss of equation (1) can proceed well beyond the active ra-
diopulsar phase and the magneto-dipolar outflow creates a hollow cavern nesting
the NS. Phase E remains active as long as the characteristic radius rst of this
cavern (the stopping radius [1] [2]) is larger than both the light cylinder radius

rlc =
cP

2π
(3)
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and the gravitational radius

rG =
2GM

c2s + v2
rel

(4)

where cs is the sound speed of the interstellar medium (ISM) and vrel the NS
velocity relative to the medium. Phase E ends when matter leaks through rst,
and this occurs when the period exceeds

PE→P =
2π3/4

c
√

2GM
μ1/2v1/2#−1/4 (5)

where v = (c2s + v2
rel)

1/2 and # is the mass density of the ISM [3]. At PE→P
the outflowing pulsar momentum flux is unable to balance the ram pressure
of the gravitationally captured matter at rG [3]. Matter initiates its infall and
approaches the magnetospheric radius

rA =
(

μ4

2GMṀ2

)1/7

. (6)

Here the magnetic pressure of the dipolar stellar field (∝ r−6) balances the ram
pressure of the infalling material (∝ r−5/2), accreting at a rate Ṁ . At rA the
steeply rising magnetic field would thread the flow, enforcing it to corotation.
However, not always can matter trespass this edge: penetration is prevented
whenever the rotational speed Ω of the uniformly rotating magnetosphere ex-
ceeds the local Keplerian velocity ωK (= [GM/r3

A]1/2) at rA. This condition
translates into a comparison between the corotation radius

rcor =
(
GM

Ω2

)1/3

(7)

and rA. When rcor lies inside rA the magnetosphere centrifugally lifts the plasma
above its escape velocity, inhibiting its further infall toward the NS surface: this
is the propeller phase P. The magnetically driven torques lead to a secular spin-
down of the NS occurring at a rate

d

dt
(IΩ) = ξṀr2

cor [ωK(rA) − Ω] , (8)

where Ṁ is the accretion rate at rA, and ξ a numerical factor dependent on
the accretion pattern, ranging from ξ � 1 for disc accretion to ξ � 10−2 for
spherical accretion. The effectiveness of the propeller in spinning down the NS
and in ejecting matter far out from the magnetosphere is still largely model
dependent [4]. Recently, evidence that this mechanism is at work in binaries of
high [5] and low mass [6] has come from X-ray observations.

Phase P terminates only when the corotation radius rcor increases above
rA; thereon the NS is able to accept matter directly onto its surface: this is
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the accretion phase A. The transition P → A occurs at a critical NS spin rate
PP�����A obtained by equating rA and rcor:

PP→A =
2π√
GM

(
μ4

2GMṀ2

)3/14

∝ B6/7

Ṁ3/7
. (9)

In isolated NS, the accretion flow is almost spherically symmetric and the
NS period P, after the onset of A, may vary erratically due to the positive and
negative random torques resulting from the turbulent ISM [7,8] 1

In a disc-like geometry (in binaries) the spin evolution during accretion
is guided by the advective, magnetic and viscous torques present in the disc.
Depending on their relative magnitude, these torques can either spin the NS up
or down. The rate of change of the NS angular momentum is obtained integrating
the different contributions over the whole disc, yielding

d

dt
(IΩ) � Ṁr2

AωK(rA) +
∫ ∞

rA

B2
z

R3h

η
[ωK(R)−Ω]dR , (10)

where η is the plasma electrical diffusivity, h the disc scale thickness and R the
radial cylindrical coordinate (in eq. 10 we neglect the local viscous contribu-
tion as it vanishes at rA). The first term in the rhs of equation (10) describes
the advection of angular momentum by accretion. Magnetic torques are instead
non-local, resulting from an integral that extends over the whole disc: different
regions can give either positive (spin-up) or negative contributions (spin-down).
When Ω � ωK(rA), the integrand in (10) is negative yielding a spin-down mag-
netic torque. On the other hand, if the star rotates very slowly (Ω 	 ωK(rA))
the overall magnetic torque is positive, leading to a secular spin-up: when the
total torque is positive the spin-up process is termed recycling. At a critical (in-
termediate) value of Ω, termed equilibrium angular velocity ωeq, the magnetic
torque is negative, and its value exactly offsets the (positive) advective torque.
In this regime the NS accretes matter from the disc without exchanging angular
momentum at all. The precise value of ωeq is rather uncertain, but it ought to lie
between 0.71− 0.95 times the critical frequency ωcr = 2π/PP→A, in the mid of
the propeller and accretor regimes (see [9] and references therein). Since ωcr and
ωeq have near values, they are often confused in the literature. There is a narrow
range for Ω between ωeq and ωcr = 2π/PP→A within which the NS accretes
mass but spins down.

Once the star has reached its equilibrium period Peq = 2π/ωeq, further
changes in the spin period P are possible only if the magnetic field and/or Ṁ
vary. Generally, field decay causes the star to slide along the so called spin-up
line (P = Peq(μ, Ṁ)) at the corresponding accretion rate Ṁ. The spin period
decreases on the time scale τμ, as Peq is proportional to μ6/7. A large increase
in the mass transfer rate can induce further spin up since the magnetosphere at
1 Old accreting isolated NSs are thus expected to show strong fluctuations of Ṗ over

a time scale comparable to the crossing time τfluct ∼ min(rISM, rG)/vrel, where rISM

is the spatial scale of the ISM inhomogeneities.
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rA is squeezed in a region of higher Keplerian velocity. A decrease in Ṁ has the
opposite effect and if there is a decline in the mass transfer rate (due to disc
instabilities and/or perturbations in the atmosphere of the donor star), the NS
can transit from A → P → E . The critical period for the last transition does
not coincides with equation (5), but occurs when the Alfven radius rA (function
of the mass transfer rate Ṁ) exceeds the light cylinder radius rlc (eqs. 3 and 6),
i.e., when

PP→E =
2π
c

(
μ4

2GMṀ2

)1/7

, (11)

(note that this transition is not symmetric relative to E → P). Over the stellar
lifetime, NSs can trace loops moving through the various phases (P ↔ A or/and
P ↔ E). It may happen that rA increases above rG when Ṁ is very low (as in
the ISM): in this case the star is in the so called Georotator state (G).

The major drivers of the NS evolution are magnetic field decay (though
amplification is an interesting possibility) and variations in the mass transfer
rate: their study is thus the subject of §3 and §4..

3 Magnetic Field Evolution

In the μ versus P diagram of pulsars (PSRs) we clearly find NSs endowed by
intense magnetic fields (the canonical pulsars) and the ”millisecond” pulsars
(MSPs), NSs with a much lower magnetic moment. The first are isolated ob-
jects and largely outnumber the millisecond pulsars often living in binaries with
degenerate companion stars. The origin of this observational dichotomy seems
understood but the physical mechanisms driving the field evolution remain still
uncertain. We review here current ideas for the evolution of the B field. They
are applied later when investigating (i) the existence of sub-millisecond pulsars,
and (ii) the nature of the six isolated NSs discovered by Rosat.

3.1 Historical and Observational Outline

Soon after the discovery of PSRs, Ostriker & Gunn [10] proposed that their sur-
face magnetic field should not remain constant but decay. Under this assumption
they explained the absence of PSRs with periods much longer than one second
(the decay of μ would bring the objects below the death line, turning off the
active radio emission [11]) and the claimed dimming of the radio luminosity LR

proportional to μ2 [12]. Their pioneering statistical study suggested that the NSs
at birth have very high magnetic moments μ � 1029÷ 1031 G cm3, whose values
decay exponentially due to ohmic dissipation in the NS interior, on a typical
time-scale [13]

τμ = 4σR2/πc2 , (12)

where σ is the conductivity, taken as uniform. Ostriker & Gunn evaluated τμ

using the electrical conductivity for the crystallized crust (� 0.6 × 1023 sec−1

[14]), thereby assuming implicitly that the magnetic field resides in the outer
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layers (ρ < 1014 g cm−3) of the star, and obtained τμ ∼ 4 × 106 yr. But in the
same year, Baym, Pethick & Pines [15] argued that the magnetic field pervades
the entire star and so one had to adopt the much higher σ of the core, thus
predicting a very long τμ exceeding the Hubble time, a result confirmed [16] in
1971 when different conductivities in the NS interior were taken into account.
When a larger number of pulsars became available for statistics, many authors
compared the observations with population synthesis Monte Carlo models. At
first [17] data seemed to support evidence for field decay, but subsequent in-
vestigations [18,19,20,21] have indicated that the observed PSR population is
compatible with no decay or with decay on time-scales τμ > 108 yr longer than
the pulsar phase, beyond which the NSs become practically invisible. There is
a way to probe indirectly the possible decay of the field by searching for those
old NSs moving with low speed (< 40 km s−1) that can gravitationally capture
the interstellar medium and shine as dim accreting sources. As discussed in §6,
their presence in the Galaxy depends on the evolution of the field.

As far as the old MSPs are concerned, these sources possess very low values
of μ ∼ 7 × 1025 − 1027 Gcm3 [22] at the moment they appear as pulsars. The
observations are again consistent with no field decay over their radio active phase,
a result inferred from the old age of the dwarf companion stars, that implies a
τμ at least comparable to their true galactic age [23,24,25,26]. This does not
preclude from the possibility that field decay has occurred during their previous
evolution: this is discussed and described in §3.4.

In the next sections we survey the models for the decay of the magnetic
field both for isolated NSs and for the NSs in binaries.

3.2 Field Evolution in Isolated Objects: Spontaneous Decay?

Models for magnetic field decay in isolated NSs flourished over the last decade.
A first improvement was to abandon the hypothesis of a uniform conductivity in
the stellar crust and core; σ increases when moving from the outer liquid layers
to the deeper crystallized crust [27]. Sang & Chanmugam [28] noticed that the
decay of a field residing only in the crust is not strictly exponential because of its
inward diffusion toward regions of higher σ. Moreover, the decay rate depends
on the (highly uncertain) depth penetrated by the initial field: the decay is more
rapid if, at birth, the field resides in the outer lower density regions of the crust
both because σ is lower and because τμ depends on the length scale of field
gradients (less than a tenth of the stellar radius R if μ is confined in the crust).

The inclusion, in the calculation, of the cooling history of the NS was a
second major improvement [29,30,31]. It confirmed the non exponential behav-
ior of the decay, showing in addition that a slower cooling would accelerate the
decay (as a warmer star has a lower conductivity). A first short phase ( <∼ 106

yr) of comparatively rapid decay was found, during which μ is reduced from
values ∼ 6÷ 30× 1030 G cm3, typical of young pulsars in supernova remnants,
to more canonical values ∼ 1÷ 3× 1030 G cm3 typical of normal PSRs. (During
this phase the electron-phonon interaction dominates σ). A second phase of no
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decay was found lasting 10÷300 Myr, followed later by a power-law decay (dom-
inated by the interaction of the electron upon the impurities) and eventually an
exponential decay.

If the field penetrates the whole star, the core ohmic decay time-scale would
be too long to allow decay [32]. Thus, an alternative scenario was proposed
based on the hypothesis that NSs have superfluid and superconducting cores.
The angular momentum of the core of a NS is believed to be carried by [33]
Nvortex � 2 × 1016/Psec neutron vortex lines, parallel to the spin axis; the
magnetic flux should be confined in Nfluxoid quantized proton flux tubes, where
Nfluxoid � 1032 BC,13, with BC,13 being the average field strength in the
core, expressed in units of 1013 Gauss. In 1990, Srinivasan et al. [34] suggested
that the inter-pinning [35] between these quantized entities causes the fluxoids
to be carried and deposited in the crust as the NS spins down. The magnetic
flux penetrated into the crust will then decay due to ohmic dissipation and the
surface magnetic field of the NS keeps decreasing until it relaxes at the value of
the residual field in the core. In this framework the spin history of the star drives
and controls the changes of the magnetic field. Assuming the same radial velocity
for both the fluxoids and the vortices this model implies a time-evolution

μ(t) = μ0 ( 1 + t/τsdd)−1/4 (13)

occurring on a spin down time

τsdd ∼ 8× 106 P 2
0 I45μ

−2
0,30 yr, (14)

where index 0 denotes values at the onset of phase E , and I45 the NS moment
of inertia in units of 1045 g cm2. The equation (13) models the simplest version
of the spin down driven (sdd) decay of μ in isolated NSs. It can be refined,
accounting for the non instantaneous relaxation of the surface magnetic field to
the value in the core [36].

Disappointedly, until now it is not possible to perform a reliable statistical
test of all the models. They predict clearly distinct evolutionary pathways only
during the early stage of the pulsar life, namely during the first 106 yr after
birth. Therefore a large sample of young NSs is requested for a comparison. Up
to now, the pulsar catalog lists only an handful of such objects, as the observed
PSR population is dominated by elder sources, with characteristic time of few
107 yr. In such situation, there is no statistical clue for rejecting the hypothesis
of a non decaying field. Some of the surveys in progress, as the one running at
Parkes [37], dedicated to the search of young PSRs, could ultimately solve this
problem.

3.3 Magnetic Field Evolution in Binaries:
Accretion Driven Scenario

None of the models for spontaneous decay, proposed so far for the isolated ob-
jects, can explain magnetic moments of ∼ 1026 G cm3, which are typical of the
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millisecond PSRs. In order to attain these values of μ over a Hubble time, the
crustal models would require currents located only in a narrow layer below a
density ρ < 6× 1010 gcm−3, a very unlikely possibility. On the other hand, the
”sdd” models would predict only a modest decrease of μ, at most of two orders
of magnitude with respect to the initial values. However, one common feature
groups the low-μ objects, i.e., that all the PSRs with low magnetic moment spent
a part of their life in a multiple stellar system. Guided by this fact, many authors
have tried to relate the low values of μ with the interaction between the NS and
its companion star(s). Two different scenarios have been proposed so far: (i) The
accretion driven scenario developed under the hypothesis of a crustal magnetic
field; (ii) The spin driven scenario lying on the hypothesis of a core magnetic
field.

In this section we consider scenario (i) taking the hypothesis that the cur-
rents generating the field are located deep in the crust 2. A first observational
suggestion about the effects of the accretion on a (crustal) magnetic field was
given in 1986 by Taam & van den Heuvel [40]: they noticed an approximate de-
pendence of the surface magnetic field Bs on the amount of mass accreted onto
the neutron star. Shibazaki et al. [41] later presented an empirical formula for
the decay in presence of accretion:

μ =
μ0

1 + ΔMacc/m∗
(15)

where μ0 represents the magnetic moment at the onset of accretion, ΔMacc is the
amount of accreted mass and m∗ a parameter to be fitted with the observations.
These authors claimed that m∗ ∼ 10−4M� could reproduce the Taam & van den
Heuvel’s correlation. Zhang, Wu & Yang [42,43] gave physical foundation to (15)
assuming that the compressed accreted matter has ferromagnetic permeability.
However, using a larger database Wijers [44] showed that these models are not
fully consistent with the available data both on X-ray binaries and recycled
pulsars. Romani [45] first introduced the accretion rate Ṁ as a second parameter
in driving the magnetic moment decay in addition to ΔMacc. He pointed out that
the accretion produces two major effects: (i) heating of the crust (depending on
Ṁ), which determines a reduction of the conductivity (and in turn a hastening
of the ohmic decay) and (ii) advection of the field screened by the diamagnetic
accreted material. As a result, the final value of μ depends both on ΔMacc and
on Ṁ . Moreover, the advection of the field lines stops when μ <∼ 1027 G cm3,
resulting in an asymptotic value for the magnetic moment (in agreement with
the observations).

The existence of a bottom field (with a predicted scaling μ ∝ Ṁ1/2) is
also possible if the currents sustaining the surface magnetic field of the NS
2 The onset of a thermo-magnetic instability, which transforms heat into magnetic

energy at the moment of NS formation, is an effective mechanism to produce strong
fields in the crust of a NS [38,39]. Although this instability is not yet completely
explored for poloidal fields, it is a plausible mechanism for the origin of a crust field
which does not depend on special assumptions.
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are neutralized by the currents developed in the diamagnetic blobs of accreted
matter [46]. In this case the decay of μ typically ends when the accretion disc
skims the NS surface [47].

The first fully consistent theoretical calculations of the accretion-induced-
decay of the crustal magnetic field of a NS were performed by Urpin, Geppert
& Konenkov [48,49,50,51]. The basic physical mechanism is the diffusion (ohmic
decay of currents) and advection of the magnetic field sustained by currents
circulating in the non superconducting crust. The magnetic field evolution is
calculated according to the induction equation:

∂B

∂t
= − c2

4π
∇∧

(
1
σ
∇∧B

)
+∇∧ (v ∧B) (16)

where B is the magnetic induction and v is the velocity of the moving fluid (= 0
in a non accreting NS, |v| = Ṁ/4πr2ρ for a radial approximation of the accreted
fluid flow). In their calculation, the superconducting NS core is assumed to expel
the magnetic field (in the following we will refer to this boundary condition for
the field at the crust-core interface as BCI); the induction equation is solved for
a dipolar field and σ is given as in [52].

Accretion affects the ohmic decay in two ways: (i) heating the crust, so re-
ducing σ; (ii) transporting matter and currents toward the core-crust boundary.
The relative importance of these two effects depends on other physical parame-
ters, such as the initial depth penetrated by the currents, the impurity content
(Q), the accretion rate, the duration of the accretion phase and the equation
of state of the nuclear matter. Coupling the magnetic history of the star to its
spin evolution, Urpin, Geppert & Konenkov [53] found that neutron stars born
with standard magnetic moments and spin periods can evolve to low-field rapidly
rotating objects, as illustrated in Figure 1.

The behavior of currents and the response of nuclear matter to an interior
field, at the interface between the crust and the core of a NS (typical density
� 2 × 1014 g cm3), is still an open issue for the theorists. In view of these
uncertainties, Konar & Bhattacharya [54] chose a different boundary condition
at the crust-core interface for solving the equation (16). They noticed that the
deposition of accreted matter on top of the crust can imply the assimilation of
original current-carrying crustal layers into the superconducting core of the NS.
In particular they assumed [54] the newly formed superconducting material to
retain the magnetic flux in the form of Abrikosov fluxoids [15] rather than to
expel it through the Meissner effect (in the following this boundary condition
will be labeled as BCII). Within this model, accretion produces a third effect
on the evolution of μ: (iii) the assimilation of material into the core, where the
conductivity is huge, freezes the decay.

As illustrated in Figure 2, also this hypothesis leads to a reduction of the
surface magnetic field of more than 4 orders of magnitude in 108 yr, explaining
the low μ and its possible freezing in the millisecond pulsar population. Likewise
for BC I, it emerges that the decay of μ depends not only on the total accreted
mass, but on the accretion rate itself. However, in this case the higher the accre-
tion rate is, the stronger is the pull of crustal material into the core resulting in
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Fig. 1. Magnetic, rotational and thermal evolution vs time of a 1.4 M� NS with μ =
1030 G cm3 at birth, as calculated in [53], under BCI. The adopted equation of state
is PS (a stiff one). The initial depth of the currents is 1013 g cm−3 and the impurity
parameter Q = 0.01. Phase I and II refers to E and P respectively. The value of Ṁ
from the stellar wind (referred to as phase III of A) is 2/3 × 10−8ṀE, and the lifetime
of the companion star on the main sequence is 5 × 109 yr. During the disc accretion
phase (as referred to IV), Ṁ is 2/3 × 10−3ṀE (solid line) or 2/3 × 10−2ṀE (dotted
line). Phase IV lasts 108 yr. The inserted panel enlarges the spin evolution during the
very short phase at the boundary between phase III and IV, that is when disc accretion
sets in.

an earlier freezing of the decay. In a subsequent paper [55], it was claimed that
such a positive correlation between Ṁ and the final value of μ is supported by
some observational evidence [56] [57].

Other refinements of the accretion-induced decay scenario include the effects
of a non spherical symmetric accretion [58], the evolution of multipoles at the NS
surface [58], the post-accretion increase of μ due to the re-diffusion of the buried
field towards the surface [59], and the relativistic corrections to the decaying
history [60]. All together, they produce only slight changes to the aforementioned
results.

3.4 Magnetic Field Evolution in Binaries: Spin Driven Scenario

Both the simple idea of the flux conservation during the gravitational collapse
and the action of a dynamo in the convective proto-neutron star [61] lead to
the existence of a magnetic field penetrating the whole NS. Due to the huge
conductivity of the core matter, no ohmic decay occurs during a Hubble time
and so other effects have been invoked to account for the low field NSs.



450 M. Colpi et al.

Fig. 2. Evolution, under BCII, of the surface magnetic field of a 1.4 M� NS un-
dergoing accretion at six different levels. From top to bottom Ṁacc = 2/3 of
10−5; 10−4; 10−3; 10−2ṀE , and 1.3×10−2; 2/3×10−1 ṀE. The flattening of the curves
for the higher Ṁ is clearly visible [54].

Besides magneto-dipole braking, a NS experiences a longer and more sig-
nificant phase of spin-down, phase P (described in §2) which enhances the effect
of the spin-down driven scenario sketched in §3.2. This is particularly impor-
tant when the NS lives in a binary system. Miri & Bhattacharya [36] and Miri
[62] explored the case of low mass systems showing that at the end of P and
A phases the magnetic moment μ has decayed, relative to its initial value μ0,
by a factor scaling with P0/Pmax where P0 is the initial rotational period and
Pmax the longest period attained during the phase where P is active (P results
from the interaction of the companion wind with the NS). Assuming that the
star spins-down to P <∼ 103 sec, a residual magnetic moment is

μfinal �
0.1÷ 1 sec
1000 sec

μ0 � 10−4 ÷ 10−3 μ0 � 108 ÷ 109 G cm3 (17)

compatible with the values observed for MSP population.
Recently, Konar & Bhattacharya [63] re-examined this scenario in the case

of accreting NSs, incorporating the microphysics of the crust and the material
movements due to the accretion. They concluded that the model can reproduce
the values of μ observed in the low-mass systems only for large values of the
unknown impurity parameter Q >∼ 0.05 (in contrast with the accretion driven
decay models demanding for a Q <∼ 0.01). If the wind accretion phase is short
or absent, Q should even exceed unity. A more serious objection to this model
was risen by Konenkov & Geppert [64] who pointed out that the motion of the
proton flux tubes in the core leads to a distortion of the field structure near the
crust-core interface and this in turn creates a back-reaction of the crust on the
fluxoids expulsion: it results that (i) the sdd can be adequate for describing the
μ-evolution only for weak initial magnetic moments (μ0

<∼ 1029 G cm3) and (ii)
the predicted correlation μfinal ∝ P−1

max is no more justified.
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Finally, we have to mention another class of models in which the magnetic
evolution is strictly related with the spin history of the star: in 1991 Ruderman
[65,66] proposed that the coupling among P and μ could take place via crustal
plate tectonics. The rotational torques acting on the neutron star cause the
crustal plates to migrate, thus dragging the magnetic poles anchored in them.
As a consequence the effective magnetic dipole moment can strongly vary, either
in intensity (decreasing or growing) and in direction, suggesting a tendency to
produce an overabundance of both orthogonal (spin axis ⊥ magnetic axis) and
nearly aligned rotators (spin axis ‖ magnetic axis). Current observation of disc
population MSPs seem compatible with this feature [67]. Moreover the crust-
cracking events could account for the glitches seen in young PSRs [68]. A more
extended description of the variety of the spin driven decay models can be found
for example in [69].

4 Evolutionary Pathways in Various Environment

As illustrated in the previous sections, the magnetic field and spin evolution in
phases E , P or A is a sensitive function of the environment. For the isolated
NSs, the intrinsic velocity distribution plays, in addition, an important role.
Thus, we here describe the NS evolution in the two main environments: in low
mass binaries and in the ISM medium.

4.1 Binaries

The NSs in binaries experience a complex evolution which is tightly coupled to
the orbital and internal evolution of the companion star [70]. The powerful pulsar
wind initially sweeps the stellar wind away and the NS spends its lifetime in the
E phase. With the weakening of the electro-magnetic pressure with increasing
period, an extended P phase establishes (lasting 108− 109 yr) during which the
NS is spun down further to periods of ∼ 102 − 104 seconds in its interaction
with the stellar wind of the companion star. When the period PP→A is attained,
accretion sets in down to the NS surface and we could possibly trace this phase
identifying the X-ray emission from the wind fed NS. Here the NS can accrete
with no exchange of angular momentum with the incoming matter unless the
magnetic field decays due to either accretion induced or spin induced decay.
The NS can slide along the corresponding equilibrium spin up line. As soon as
the donor star evolve into a giant state, it can fill its Roche lobe (and matter
overflows from the inner Lagrangian point forming an accretion disc. When a
disc establishes (on the viscous time scale) large accretion rates are available and
from this moment on recycling starts. In the Roche lobe overflow phase (RLO)
the NS can be re-accelerated to millisecond periods while the field decays down
to values of 108−109 G cm3. The mass transfer and orbital evolution are complex
to model and it is now believed that a significant fraction of the mass lost by
the donor does not accrete onto the NS, but is ejected from the system [71].
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Fig. 3. The evolutionary tracks of NSs in the plane B − P for different durations of
the evolution (labeled by the numbers on the right of the curves, in log10 yr) during
phases I(E) + II(P)+ III (A) + IV(A). The initial surface magnetic field is 3 × 1012

G, Q = 0.03, and the other parameters as in Figure 1 [51].

Once reached the spin-up line at the current accretion rate, the NS loads
matter acquiring angular momentum at the rate of field decay. Recycling ceases
when the donor star has evolved beyond the red giant phase and a dwarf remnant
is left over stellar evolution, or when the binary as become detached, so that the
donor underfills its Rocche lobe [70]. If accretion ends abruptly, the NS may
avoid phase P, transiting directly to E and possibly re-appearing as an active
radio pulsar. In low mass binaries where the donor star is a low main sequence
star, evolution proceeds in a rather ordered way: from E to P (from the stellar
wind), to A (from wind fed accretion), to A again (from a Keplerian disc; RLO),
as shown in Figure 3. Eventually the NS tranits to E or P/E when accretion
halts. Observational and theoretical considerations hint for a large decay of the
magnetic moment μ in phase A, particularly during RLO, as outlined also in
Figures 1 and 3. The recycling scenario will be applied in §5 to address the
problem of the existence of sub-millisecond pulsars.

4.2 Isolated Neutron Stars

At birth, isolated NSs experience phase E . Further evolution depends on the NS
velocity relative to the ISM, the value of the ISM density and the magnetic field
intensity. The large mean kick velocities acquired at birth (〈V 〉 ∼ 300 km s−1,
[20,21,72,73]) can reduce the extent of magnetic torques in phase P and can
impede accretion fully (as Ṁ ∝ v−3

rel and here vrel coincides with 〈V 〉). It is thus
possible that phase E never ends. This occurs when the NS speed V is as high
as V > 100μ30 n

1/2 km s−1 : This speed is derived estimating the duration of
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phase E at PE→P (eqs. 2 and 5)

τE→P = τE(PE→P) ∼ 109n−1/2V10μ
−1
30 yr (18)

imposing τE→P ∼ 1010 yr (in eq. 18, V10 and μ30 are the velocity and the
magnetic moment in units of 10 km s−1 and 1030 G cm3, respectively; hereon
we will denote the normalizations as subscripts, for simplicity). Clearly, only the
slowest NSs can loop into the accretion phase under typical ISM conditions (
where n <∼ 1 cm−3). (Molecular clouds seem a privileged site for phase A [74],
but the probability of crossing these high density regions is relatively low and
shortlived.)

Fig. 4. Phases E , P, A and G, in the V10 − μ30 plane for isolated NSs moving in a ISM
of density n = 1 cm−3 and a sound speed of 10 km s−1, from [101].

Typically, in the ISM

PE→P ∼ 10n−1/4V
1/2
10 μ−1

30 s and PP�����A ∼ 2.5× 103n−3/4V
1/7
10 μ

6/7
30 s, (19)

if the magnetic field is constant in time. As indicated in equations (18) and (19),
the NS evolution is guided by the two key parameters, V and μ (at fixed ISM’s
density). This is quantitatively illustrated in Figure 4 where the NS’s phases are
identified in the V vs B plane. A strong constant magnetic field (μ ∼ 1030 G
cm3) implies large magneto-dipole losses that decelerate rapidly the NS to favor
its entrance in phase A (even when V ∼ 300 km s−1), despite the long period of
the P → A transition (note eq. 19).

What are the consequences of field decay on the evolution? Whether field
decay enhances or reduces the probability of a transition beyond E is a subtle
question that has recently been partly addressed [75,76,77,78]. Two competing
effects come into play when B decays: (i) the spin-down rate slows down because
of the weakening of B, causing the NS to persist longer in state E ; (ii) the periods
PE→P and PP→A instead decrease with B, and this acts in the opposite sense.

To explore this delicate interplay, Popov & Prokhorov [78] studied a toy
model where a field is exponentially decaying on a scale τμ from its initial value
μ0 down to a bottom value μbo. Under this hypothesis, the Ejector time scale
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(with a decaying μ) can be estimated analytically to give

τE,μ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−τμ ln

⎡⎣τE
τμ

(
1 +

τ2
μ

τ2
E

)1/2

− 1

⎤⎦ τE,μ < τbo

τbo +
μ0

μbo
τE −

1
2
τμ

μ0

μbo

(
1− e2τbo/τμ

)
τE,μ > τbo ,

(20)

where τbo = τd ln(μ0/μbo) is the time when the bottom field is attained and τE
is from equation (2) for a constant field. Figure 5 shows the loci where the time
spent in phase E equals the age of the Galaxy, i.e., 10 Gyr, as a function of the
bottom field Bbo and of the decay time-scale τμ. The “forbidden” region lies just
below each curve. As it appears from the Figure, the interval over which the NS
never leaves stage E is non negligible: It widens when μ0 is decreased, due to
the weakness of the magneto-dipole torque. Large as well as very low bottom
fields do not constrain τμ and permit entrance to phase A. When μbo is very
low, there is a turn-off of all magnetospheric effects on the inflowing matter and
matter accretes promptly.

Similarly, Colpi et al. [75] considered a model in which the spin evolution
causes the core field to migrate to the crust where dissipation processes drive
ohmic field decay (Sect. 3). In this circumstance, the entrance to phase A is
less likely if τμ ∼ 108 yr, but possible otherwise. In summary, field decay can
hinder the stars in phase E if its decay is somewhat ”fine-tuned”, while a fast
decay would drive them into A promptly. The strongest theoretical argument
against phase A remains however the high kick velocity that the NSs acquire at
birth (see the review of Lai in this book). There remain nevertheless open the
possibility that weak field accreting NSs exist in the Sun’s vicinity.
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Table 1. Disc accretion onto a 1.4 M� neutron star

EoS Fate T/Wfin ΔMB MG,fin Pfin Mstatic
G,max Mrotating

G,max Pabs
min

F Collapse 0.034 0.172 1.52 0.72 1.46 1.67 0.47

A MassShed 0.120 0.428 1.77 0.60 1.66 1.95 0.47

E MassShed 0.115 0.414 1.76 0.66 1.75 2.05 0.48

AU MassShed 0.126 0.446 1.79 0.70 2.13 2.55 0.47

D MassShed 0.111 0.405 1.76 0.73 1.65 1.95 0.57

FPS MassShed 0.114 0.416 1.76 0.75 1.80 2.12 0.53

UT MassShed 0.119 0.429 1.78 0.75 1.84 2.19 0.54

UU MassShed 0.121 0.436 1.78 0.78 2.20 2.61 0.50

C MassShed 0.103 0.389 1.74 0.89 1.86 2.17 0.59

N* MassShed 0.130 0.484 1.84 1.08 2.64 3.22 0.68

L MassShed 0.116 0.443 1.80 1.25 2.70 3.27 0.76

M MassShed 0.091 0.367 1.74 1.49 1.80 2.10 0.81

The second and the third columns contain the fate of the NS at the end point of re-
cycling and the resulting ratio of kinetic energy over gravitational energy. The fourth
and fifth columns report the total accreted baryonic mass and the final gravitational
mass (in units of solar masses). The sixth column lists the final attained rotational pe-
riods. The seventh column collects the values of the maximum mass for a non-rotating
spherical configuration, the eighth for a maximally rotating star and its correspond-
ing minimum period for stability (ninth column). The table is from Cook, Shapiro &
Teukolsky [79].

This section is devoted to the statistical study of the old NSs in binaries in
the aim at exploring the recycling process and the possibility that ultra fastly
spinning NSs can form in these systems. A similar approach is presented in §6
for the isolated NSs in the Galaxy.

PSR1937+21, at present, is the NS having the shortest rotational period
Pmin = 1.558 ms ever detected. Despite its apparent smallness, Pmin is not a
critical period for NS rotation: as shown by Cook, Shapiro & Teukolsky [79],
the period Pmin is longer than the limiting period, Psh, below which the star
becomes unstable to mass shedding at its equator, irrespective to the adopted
equation of state (EoS) for the nuclear matter. Table 1 just shows the values
of Psh for a set of EoS and the corresponding values of accreted baryonic mass.
It shows how sensitive is Psh to the EoS, indicating that its determination is
important for our understanding of nuclear processes in dense matter.

The other important processes which intervene in accelerating a NS up to
Psh are the evolution of the mass transfer rate from the low mass companion
star and the evolution of the NS magnetic moment μ [80]. Within the recycling
scenario [81][82] all schemes suggested for the origin and the evolution of μ allow
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the accreting NSs to reduce their μ and P to the values that are characteris-
tic of MSPs. However, due to the large volume of the parameters in the mass
transfer scenario and to the strong coupling between it and the field evolution
of the NS in a low mass binary (LMB), only through a statistical approach is
it possible to establish how efficient the recycling process is in spinning a NS to
P < Pmin. This was recognized first by Possenti et al. [83,84], who carried on
statistical analyses of NSs in the millisecond and sub-millisecond range, using
a Monte Carlo population synthesis code with ∼ 3000 particles. It accounts for
the evolution during the early phases when the NS in the LMB behaves as if
isolated (E and P) and later when fed by wind accretion (A). The mass transfer
during RLO (again A) is modelled considering a range of accretion rates which
is close to the one observed. The population synthesis code follows also the last
radio-pulsar phase, whose duration is chosen from a flat probability distribution
in the logarithm of time (see Table 2 for a summary of the parameters used
in the population synthesis code). The model incorporates the detailed physics
of the evolution of a crustal magnetic field (as discussed in §3.3, using BCI and
BCII to mimic expulsion or assimilation of the field in the NS core), and includes
the relativistic corrections [80] necessary to describe the spin-up process.

Table 2. Population syntheses parameters

Physical quantity Distribution Values Units

NS period at tRLO
0 (∗) Flat 1 → 100 sec

NS μ at tRLO
0 (∗) Gaussian Log< μ0 >=28.50 ; σ=0.32 G cm3

ṁ in RLO phase (
) Gaussian Log< ṁ >= 1.00 ; σ=0.50 ṀE

Minimum accreted mass One-value 0.01 M�

RLO accretion phase time (†) Flat in Log 106 → τmax
RLO(‡) year

MSP phase time Flat in Log 108 → 3 × 109 year

(*) tRLO
0 = initial time of the Roche Lobe Overflow phase

(�) baryonic accretion rate during the Roche Lobe Overflow phase
(†) a Maximum accreted Mass of 0.5M� is permitted during the RLO phase
(‡) max duration of the RLO phase; explored values: 5×107 yr - 108 yr - 5×108 yr

Evolution is followed also beyond the RLO A phase when accretion termi-
nates. The increasing evidence that NSs in LMBs may suffer phases of transient
accretion (perhaps due to thermal-viscous instabilities in an irradiation dom-
inated disc [85,86]) is suggestive that mass transfer onto a NS may not stop
suddenly: the star probably undergoes a progressive reduction of the mean ac-
cretion rate, modulated by phases of higher and lower accretion. This in turn
can start a cycle of P phases which in principle could vanish the effect of the
previous spin-up. With the aim of exploring the effect of a decaying Ṁ on the
population of fastly spinning objects, two possibilities have been investigated: a
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persistent accretion for a time τRLO or a persistent accretion for a shorter time
followed by a transient phase mimicking the quenching of the mass transfer. The
quenching of accretion has been modelled as a power law decay for Ṁ with in-
dex Γ varying from 1→ 10 (the last value is representative of an almost sudden
switch off).

Figure 6 collects the fractional distribution of the recycled model NSs using
the set of parameters reported in Table 2 with τmax

RLO = 5×108 yr. Guided by the
values of Pmin and μmin (the shortest rotational period observed in PSR 1937+21
and the weakest magnetic moment observed in PSRJ2317+1439), the particles
are divided in four groups. Those filling the first quadrant (P ≥ Pmin and μ ≥
μmin) behave as the known MSPs. Also the objects belonging to the second
quadrant (P < Pmin and μ ≥ μmin) should shine as PSRs [87]. The effective
observability of the objects in the third quadrant (P < Pmin and μ < μmin)
as radio sources represents instead a challenge for the modern pulsar surveys.
Most of them will be above the “death-line” [88], and might have a bolometric
luminosity comparable to that of the known MSPs. Thereafter we shortly refer
to sub-MSPs as to all objects having P < Pmin and μ above the “death-line”.
Objects in the fourth quadrant (P ≥ Pmin and μ < μmin) are probably radio
quiet NSs, because they tend to be closer to the theoretical “death-line”, and
they are in a period range which was already searched with good sensitivity by
the radio surveys.

The four crosses are for two representative EoSs (a very stiff EoS with a
break-up period 1.4 ms and a mildly soft one, with Psh � 0.7 ms) and for two
different boundary conditions (BCI & BCII) for the magnetic field at the crust-
core interface. It appears that objects with periods P < Pmin are present in

Fig. 6. Distributions of the synthesized NSs, derived normalizing the sample to the
total number of model stars with P < 10 ms and arbitrary value of μ. The μ−P plane
is divided in four regions. As a guideline the upper left number in each cross gives the
percentage of objects having P < Pmin and μ > μmin (the typical variance is about
1%).
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a statistically significant number. In effect, a tail of potential sub-MSPs always
emerges for any reliable choice of the parameters listed in Table 2.

In the synthetic sample for the mild-soft EoS, the “barrier” at Psh � 0.7
ms is clearly visible in Figure 7 (solid lines): the mild-soft EoS gives rise to
period-distributions that increase rather steeply toward values smaller than 2 ms,
irrespective to the adopted BCs. Instead, the boundary condition affects the
distribution on μ: BCII produces a smaller number of objects with low field, as
the field initially decays but, when the currents are advected toward the crust-
core boundary, their decay is halted and the field reaches a bottom value.

Fig. 7. Calculated distribution of millisecond NSs as a function of the spin period P
(μ is let vary over the whole range). Solid line denotes the distribution in absence of
propeller, whilst dashed area denotes the case of a strong propeller effect. The absolute
number of objects is in arbitrary units.

Even the very stiff EoS permits periods P < Pmin, but the “barrier” of
mass shedding (at Psh � 1.4 ms) is so close to Pmin = 1.558 ms that only
few NSs reach these extreme rotational rates. Moreover the period distribution
for the stiff EoS is much flatter than that for the soft-EoS, displaying a broad
maximum at P ∼ 3 ms. It was recently claimed that X-ray sources in LMBs show
rotational periods clustering in the interval 2 → 4 ms [89,90]. This effect could
be explained introducing a fine tuned relation between μ and Ṁ (μ ∝ Ṁ1/2

[89]). Alternatively, gravitational waves emission has been invoked [91,92]. Here
we notice that such a clustering can be a natural statistical outcome of the
recycling process if the EoS for the nuclear matter is stiff enough.

Many physical ingredients necessary to fully describe the propeller induced
spin-down of a NS at the end of the RLO phase are poorly known or difficult
to assess (e.g. the exact law for the decrease of the mass transfer rate or the
efficiency in the extraction of the angular momentum from the NS to the pro-
pelled matter). Parametrizing the most uncertain quantities, the largest effect
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occurs for a propeller phase lasting ∼ 50% of the RLO phase with a power-law
index Γ ∼ 8. Figure 7 reports the period distributions (dashed areas) when
such a strong propeller phase is included. We note that a strong propeller can
threaten the formation of NSs with P < Pmin and μ > μmin in the case of the
very stiff EoS, whilst for the mild-soft EoS the distributions preserve a maximum
just about Pmin.

Fig. 8. Average gravitational masses of the re-accelerated NSs as a function of their
final spin period P. μ varies over the whole range and the synthesized NSs are binned
in 0.5 ms wide intervals. The initial mass of the static NSs is set equal to 1.35M� in
all the cases. Thick solid line denotes the mass-distribution in absence of propeller,
whereas thin dashed line with a strong propeller included.

This statistical analysis provides also information on the NS mass distribu-
tion as a function of P at the end of evolution. The initial NS gravitational mass,
in the evolutionary code, was set at MG = 1.35 M� (according to the narrow
Gaussian distribution with σ = 0.04 M� resulting from measuring the mass of
the NSs in five relativistic NS-NS binary systems [93]). Figure 8 clearly shows
that the observed millisecond population should have undergone a mass load
of <∼ 0.1M� during recycling. This is consistent with the few estimates of the
masses of millisecond pulsars in low mass binaries [94] and raises the problem
of explaining how the NS can get rid of the bulk of the mass (0.5 − 1.5 M�)
released by the companion during the RLO phase [71].

Figure 8 suggests that the mass function steepens toward high values only
when P falls below ∼ Pmin, approaching M ∼ 1.7 ÷ 1.8 M�. That is a straight
consequence of a results already pointed out by Burderi et al. [80]: a large mass
deposition (at least >∼ 0.25M�) is required to spin a NS to ultra short periods, as
illustrated in Figure 9. The action of the propeller during the evolution has the
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Fig. 9. Period versus Accreted Baryonic Mass for a magnetized NS using FPS-EoS
and an initial gravitational mass of 1.40 M�. The different pathways (a sample is
represented by the dashed lines) define a strip, which narrows towards shorter periods.
The strip is upper bounded by the evolutionary path for an unmagnetized NS (bold
solid line). The bold long dashed line refers to the evolution along the spin-up line and
is calculated assuming a tuned torque function (which maximizes the efficiency of the
spin-up process). The thin solid line refers to a very slow decay of μ, implying larger
mass depositions in order to attain very short spin periods.

effect of reducing the mass infall: the mass distribution is only slightly affected
for the mild-soft EoS, while for the stiff EoS the difference is more pronounced.

In summary, the wandering among the various phases can account for the
interesting phenomenology of the MSPs observed and opens the possibility that
even more extreme objects like the sub-MSPs exist in the Galaxy.

5 The NS Census in the Milky Way

The isolated NSs follow a completely different evolution pattern. Generally, over
the Hubble time, they cover large portion of the Milky Way and thus explore
regions where the ISM is inhomogeneous looping among the various phases er-
ratically. With a population synthesis model, Popov et al.[101] traced their evo-
lution in the ISM, and in the Milky Way potential. The model NSs, born in
the galactic plane at a rate proportional to the square of the ISM density, have
initially short spin periods, magnetic fields clustered around 1012 G, and spatial
(kick) velocities that can be drawn for a Maxwellian distribution (with mean
velocity modulus 〈V 〉 treated as a parameter).

The collective properties are illustrated in Figure 10 for two initial values of
μ0 = 0.5− 1× 1030 G cm3: For a non evolving field most of isolated NSs spend
their lives as Ejectors and there is no possibility to observe them. Propellers are
shortlived [7], and Georotators are rare. A tiny fraction (a few percents) on the



Spin and Magnetism in Old Neutron Stars 461

0.0 200.0 400.0 600.0
Velocity, km/s

1

10

100
Accretors

0.0 200.0 400.0 600.0
0.0

20.0

40.0

60.0

80.0

100.0
Ejectors

0.0 200.0 400.0 600.0
Velocity, km/s

0.00

0.20

0.40

0.60
Georotators

0.0 200.0 400.0 600.0
0.00

0.05

0.10

0.15

0.20

0.25

Propellers

Fig. 10. Fractions of NSs (in percents) in phases E , PA and G versus the mean kick
velocity 〈V 〉, for a constant magnetic moment μ = 0.5 × 1030Gcm3 (open circles) and
μ = 1030Gcm3 (filled circles); typical statistical uncertainty for E and A ∼ 1-2%.

NSs are in the Accretor stage if 〈V 〉 is above 200 km s−1. Only in the unrealistic
case of a low mean velocity, the bulk of the population would be in stage A.

As illustrated in Figure 11, in phase A, the mean value of Ṁ is a few 109

g s−1 and, among the Accretors, the typical velocity clusters around 50 km s−1,
and the luminosity L ∼ (GM/R)Ṁ around 1029 erg s−1. Accreting isolated NSs
are ”visible”, but they would be extremely dim objects emitting predominantly
in the soft X-rays, with a polar cap black body effective temperature of 0.6 eV.
What can we learn when comparing the theoretical census with the observations?
We can discover if field decays in isolated objects, if the population is devoid
of slow objects, and if the stars effectively spin down due to the unavoidable
interaction with the tenuous ISM. The search of accreting isolated NSs is thus
compelling [102,103,104,77].

5.1 Accreting Isolated Neutron Stars in the Rosat Sky?

Despite intensive observational campaigns, no irrefutable identification of an
isolated accreting NS has been presented so far. Six soft sources have been found
in Rosat field [77], identified as isolated NSs from the optical and X-ray data.
Observations, however, do not permit to unveil the origin of their emission, yet.
These sources could be powered either by accretion or by the release of internal
energy in relatively young (≈ 106 yr) cooling NSs 3. Although relatively bright

3 see [77] for an updated review, the description of the sources and a complete reference
list.
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Fig. 11. Upper left panel: the log N-log S distribution for Accretors within 5 kpc from
the Sun. Dashed (solid) curve refers to emission from polar cap (entire NS surface) in
the range 0.5-2.4 keV: straight lines with slopes -1 and -3/2 are included for comparison.
Fro top right to bottom right: the velocity V , effective polar cap temperature and
accretion rate Ṁ distributions for Accretors [106]

(up to ≈ 1 cts s−1), the proximity of the sources (inferred from the column
density in the X-ray spectra) makes their luminosity (L ≈ 1031 erg s−1) near to
that expected from either a close-by cooling NS or from an accreting NS, among
the most luminous. Their X-ray spectrum is soft and thermal, again as predicted
for both Accretors and Coolers.

Can a comparison with theoretical expectations help in discriminating
among the two hypothesis? First, the paucity of very soft X-ray sources in the
Rosat fields (in comparison with earlier expectation [103,104]) is indicating that
Accretors are rare objects. If these six sources are indeed accreting, this implies
that the average velocity of the isolated NSs population at birth has to exceed
∼ 200 km s−1 (a figure, which is consistent with that derived from radio pulsars
statistics [105]). In addition, since observable accretion–powered isolated NSs are
(intrinsically) slow objects, these results exclude the possibility that the present
velocity distribution of NSs is richer in low–velocity objects with respect to a
Maxwellian. Thus, despite the fact that in our Galaxy there are many old NSs
(about 109), the young (∼ 106 yr) cooling NSs seems to outnumber, at the Rosat
counts, those in phase A. This is what emerges also from the calculation of the
log N-log S distribution both of cooling and accreting stars (the last carried on
with ”census”; [106]). At the bright counts, the local population of cooling NSs
would dominate over the log N-log S of the dimmer and warmer (less absorbed)
Accretors. There is the hope that Chandra and Newton will detect them, at the
flux limit of 10−16 erg cm−2 s−1 [106]. In support of the cooling hypothesis there
is also the recent measurement[107,108] of the velocity (200 km s−1) of RXJ1856
(a member of this class) indicating that this source is, most likely, not powered
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by accretion having a high velocity. Interestingly, the cooling hypothesis (when
explored in the log N-log S plane) implies that the NS birth rate in the Solar
vicinity, over the last 106 yr, is higher than that inferred from radiopulsar ob-
servations [106,109]. This might be a crucial point as it may indicate that most
of the young NSs may not share the observational properties of the canonical
PSRs, hinting for the presence of a background of ”anomalous” young cooling
NSs.

About field decay in the accretion hypothesis? Decay of the field to extreme
low values would imply a large number of Accretors [101], not observed, thus
excluding this possibility. This indicates that, in crustal models [28,30], electric
currents need to be located deep into the crust and that the impurity parameter
needs to be not exceedingly large [63], in spin-down induced models. What is
still uncertain is whether the paucity is due mainly to a velocity effect than to
a ”fine-tuned” decay, a problem not solved yet, statistically.

While our theoretical expectation hints in favor of the cooling hypothesis
there remain yet a puzzle: the long period of one of these sources, RXJ0720 [110].
If powered by accretion, RXJ0720 would have a ”weak” field NS (μ >∼ 1026 G
cm3) and this would be a rather direct prove of some field decay, in isolated
NSs [111,112]. Can a young cooling object have such a slow rotation? Do we
have to change or view that NSs come to birth with ultra short periods? A new
challenging hypothesis has been put forward [110,113,114] that RXJ0720 is just
the descendant of a highly magnetized NS (a Magnetar) that have suffered a
severe spin down accompanied by a nonlinear decay of the field whose energy is
powering the X-ray luminosity [115]. This issue remains one of the new problems
of the NS physics, making the debate on the nature of these sources an even more
exciting problem.

6 Conclusions

In this review we have traced the evolution of old NSs transiting through the
Ejector, Propeller and Accretor phases. The NSs of our review are far from
being ”canonical” MSPs in light binaries, or ”canonical” PSRs in the field. The
ultra fastly spinning NSs, that we have recycled in binaries, are rather extreme
relativistic heavy NSs: If discovered, they will unable us to probe the stellar
interior in an unprecedented way, and to constrain the physics driving magnetic
field decay, in interacting systems. As regard to the field NSs, the discovery of the
six Rosat sources has just opened the possibility of unveiling ”unconventional”
NSs, evolving in isolation. Whether they are accreting or cooling objects is still
a mystery and even more mysterious and fascinating is their possible link with
”Magnetars”. The study of these ”unusual” NSs can open new frontiers in this
already active field of research.
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Abstract. This review demonstrates that the neutrino emission from the dense
hadronic component in neutron stars is subject to strong modifications due to col-
lective effects in nuclear matter. With the most important in-medium processes incor-
porated in the cooling code an overall agreement with available soft X ray data can be
easily achieved. With these findings so called “standard” and “non-standard” cooling
scenarios are replaced by one general “nuclear medium cooling scenario” which relates
slow and rapid neutron star coolings to the star masses (interior densities). In-medium
effects play an important role also in the early hot stage of the neutron star evolution
by decreasing the neutrino opacity for less massive and increasing it for more massive
neutron stars. A formalism for the calculation of the neutrino radiation from nuclear
matter is presented that treats on equal footing one-nucleon and multiple-nucleon pro-
cesses as well as reactions with resonance bosons and condensates. The cooling history
of neutron stars with quark cores is also discussed.

1 Introduction

The EINSTEIN, EXOSAT and ROSAT observatories have measured surface tem-
peratures of certain neutron stars (NS) and put upper limits on the surface
temperatures of some other NS (cf. [1,2,3] and further references therein). The
data for some supernova remnants indicate rather slow cooling, while the data
for several pulsars point to an essentially more rapid cooling.

Physics of NS cooling is based on a number of ingredients, among which the
neutrino emissivity of the high density hadronic matter in the star core plays a
crucial role. Except for the first minutes/hours when the temperature of the star
is above 1 MeV, the star is transparent to neutrinos, i.e. once produced inside the
star, neutrinos and antineutrinos leave without further interactions (collisions)
with the ambient matter, thus carrying away the star’s energy; in other words,
the condition λν , λν̄ � R, where λν , λν̄ are the neutrino and antineutrino mean
free paths and R is star radius is satisfied below the temperatures of the order of
MeV. In the so called “standard scenario” of the NS cooling (scenario for slow
cooling) the most important channel of neutrino radiation down to temperatures
T ∼ 109K is the modified Urca (MU) process nn → n p e ν̄. First estimates of
the emissivity (energy radiation per unit time) for this reaction were carried out
in [4,5]. The [6,7] recalculated the emissivity of this process in a model, where the
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nucleon-nucleon (NN) interaction was treated with in terms of slightly modified
free one-pion exchange (FOPE).

This important result for the emissivity of the modified Urca (MU) reaction,
εν [FOPE], turned out to be by an order of magnitude larger than the previous
estimates. It was used in several computer simulations, which led to emergence
of the “standard scenario” of neutron star cooling, see e.g. [8,9,10].

Besides the MU process, in the framework of the “standard scenario”,
numerical codes included also the processes of nucleon (neutron and proton)
bremsstrahlung (NB) nn→ nnνν̄ and n p→ n pνν̄, which, however, contribute
less to the total luminosity of the star compared to the MU process, see [11,6].
Medium effects enter the above two-nucleon (MU and NB) rates mainly through
the effective mass of the nucleons which has a smooth density dependence. There-
fore in the FOPE model the density dependence of the reaction rates is rather
weak and the neutrino losses of a NS depend only very weakly on its mass. As
a result the “standard scenario”, (based on the reaction rates derived in [6])
predicts NS temperatures which agree well with the measured temperatures of
several slowly cooling NS, but fails to explain the temperatures of more rapidly
cooling stars. In addition the “standard scenario” includes processes of neutrino
emission in the NS crust which become important at low temperatures.

The non-standard scenario of NS cooling is based on different types of direct
Urca-like processes involving exotic agents (so called exotica), such as the pion
Urca (PU) [12] and kaon Urca (KU) [13,14] β–decay processes and direct Urca
(DU) on nucleons and hyperons [15] which are allowed only in sufficiently dense
interiors of rather massive NS. The main difference in the cooling efficiency
driven by the DU-like processes on the one hand and the MU and NB processes
on the other hand lies in the quite different phase spaces associated with these
reactions. In the case of MU and NB reactions the available phase space is the
one corresponding to a two-fermion interaction (in the initial and final states of
the reactions there are two baryons) while in the pion (kaon) β–decay and DU
on nucleons and hyperons the phase space corresponds to one-fermion decays
(as there is a single baryon in the initial and final state of the reaction).

The critical density of pion condensation in NS matter is #cπ � (1 ÷ 3)#0
depending on the type of condensation (neutral or charged) and the model,
see [16,17,18,19]. The critical density of kaon condensation is #cK � (2 ÷ 6)#0
depending on the type (K− or K̄0, S or P wave) and the model, see [20,21].
Critical density for the DU process is #cU � (2÷6)#0 depending on the model for
the equation of state (EoS), see [15,18]. Recent calculations [19] estimated the
critical density of neutral pion condensation to be 2.5#0, while for the charged
pion condensation - 1.7#0. On the other hand based on a variational calcula-
tion [18] argued that the critical densities are even for smaller (� 1.3#0 for π0

condensation). At the same time the EoS of [18] allows for DU process only at
# > 5#0.

There is no bridge between “standard” and “non-standard” scenarios due to
complete ignorance of in-medium modifications of NN interaction such as strong
polarization of the soft modes (like virtually dressed pion and kaon modes medi-
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ating a part of in-medium baryon–baryon interaction). A pion condensate may
appear only due to an enhancement of the medium polarization with increas-
ing baryon density and it seems thereby quite inconsistent to ignore the effects of
softening of the pion modes for # < #cπ, and suddenly switch on a fully developed
condensate for # > #cπ.

Now let us on the basis of the results of [22,23,24,25,16,26] briefly discuss
a general “nuclear medium cooling scenario” which treats the obvious short-
coming of the two above mentioned scenarios. First of all one observes [22]
that in the nuclear matter many new reaction channels open up as compared
to the vacuum. Standard Feynman technique is inadequate for calculating the
in-medium reaction rates if particle widths are important, since there are no
free particle asymptotic states in the matter. The summation of all perturbative
Feynman diagrams where free Green functions are replaced by the in-medium
ones leads to a double counting due to multiple repetitions of some processes (for
an extensive discussion of this defect see [27]). This failure calls for a formalism
dealing with closed diagrams (integrated over all possible in-medium particle
states) constructed from full non-equilibrium Green functions. Such a formal-
ism was elaborated in [23,24] first within quasiparticle approximation (QPA) for
nucleons and was named in [24] “the optic theorem formalism (OTF) in non-
equilibrium diagram technique”. It was demonstrated that standard calculations
of the rates via squared reaction matrix elements and calculation using OTF
coincide within QPA picture for the fermions. In [28] the formalism was gener-
alized to include the effects of arbitrary particle widths. The latter formalism
treats on an equal footing one-nucleon and multiple-nucleon processes as the
resonance reaction contributions of the opsonic origin as well as processes with
participation of zero sounds and reactions on boson condensates. Each diagram
in the series with full Green functions is free from the infrared divergences. Both,
the correct quasiparticle (QP) and quasiclassical limits are recovered.

Except for very early stages of NS evolution (minutes - hours) typical aver-
aged lepton energy (>∼ T ) is larger then the nucleon particle width ΓN ∼ T 2/εFN

and the nucleons can be treated within the QPA. This observation simplifies
much the calculations since one can use an intuitive way of separation of the
processes according to the available phase space. The one-nucleon processes have
the largest emissivity (if they are not forbidden by the energy-momentum con-
servation laws), then two-nucleon processes provide the dominant contribution
to the emissivity, etc.

In the temperature interval Tc < T < Topac (Tc is a typical tempera-
ture for the nucleon pairing and Topac is typical temperature at which neu-
trino/antineutrino mean free path λν/λν̄ is approximately equal to the star
radius R) the neutrino emission is dominated by the medium modified Urca
(MMU) and medium nucleon bremsstrahlung (MNB) processes if one-nucleon re-
actions like DU, PU and KU are forbidden, as it is the case for # < #cU , #cπ, #cK .
Corresponding diagrams for MMU process are schematically shown in Fig. 1.
The references [22,23,24,25,16] considered NN interaction within Fermi liquid
Landau–Migdal approach. They incorporated the softening of the medium one-
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Fig. 1. Antineutrino emission from a nucleon leg (left graph) and from intermedi-
ate scattering states (right) in MMU process. Full dot includes weak coupling vertex
renormalization.

pion exchange (MOPE) mode, other medium polarization effects, like nucleon-
nucleon correlations in the vertices, renormalization of the local part of NN
interaction by the loops, as well as the possibility of the neutrino emission from
the intermediate reaction states and resonance DU-like reactions involving zero
sound quanta and boson condensates.

The references [23,25,16] have demonstrated that for # >∼ #0 second diagram
of Fig. 1 gives the main contribution to the emissivity of MMU process rather
than the first one, whose contribution has been earlier evaluated in the framework
of FOPE model in [6]. This fact essentially modifies the absolute value the rate of
the reaction nn→ npeν̄ as well as its density, which becomes very steep. Thereby,
for stars with masses larger than the solar mass the resulting emissivities were
proved to be substantially larger than those values calculated in FOPE model.
With an increase of the star mass (central density) pion mode continues to soften
and MMU and MNB rates increase further. At # > #cπ pion condensation begins
to contribute. Actually, the condensate droplets may exist already at a smaller
density if a mixed phase appears, as suggested in [29]. At T > Tmelt, where
Tmelt is the melting temperature, roughly ∼ several MeV, the mixed phase is
in a liquid state and PU processes involving independent condensate droplets
would be possible. At T < Tmelt condensate droplets arrange themselves in a
crystalline lattice which substantially suppresses underlying neutrino processes.

The reference [12] considered the reaction n → pπ−
c eν̄, whereas [22,23] in-

cluded other possible pion π±, π0 condensate processes on charged and neutral
currents (e.g., like nπ0

c → peν̄, nπ+
c → pνν̄ and nπ0

c → nνν̄) as well as resonance
reactions on zero sound modes which are possible also when # < #cπ. Due to
the NN correlations all pion condensate rates are significantly suppressed (by
factors ∼ 10 – 100 compared to the first estimate of [12], see also [30,22,23,31].
At # ∼ #cπ both the MMU and PU processes are of the same order of magnitude
[23] demonstrating a smooth transition at higher densities (star masses) which
is absent in the “standard” and “non-standard” scenarios.

For T < Tc the reactions of neutrino pair radiation from superfluid nucleon
pair breaking and formation (NPBF) shown in Fig. 2 become the dominant neu-
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trino loss processes. The neutron pair breaking and formation (nPBF) process

νν
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N N
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ν

Fig. 2. Neutrino–antineutrino emission from Cooper pair-breaking (left graph) and
pair-formation processes (right graph).

for the case of the 1S0 pairing was first calculated in [32] using the standard Bo-
golyubov technique. Later this process was independently calculated in [24,25]
to demonstrate the efficiency of OTF within the closed non-equilibrium diagram
technique developed there. Moreover [24] calculated emissivity of the correspond-
ing process involving protons (pPFB) taking into account strong coupling pνν̄
vertex renormalization (see first diagram (18) below). This vertex renormaliza-
tion increases the pPFB emissivity (for # ∼ (1.5 ÷ 3)ρ0) by one-two orders of
magnitude compared to what would be found with the vacuum vertex. As a
result both nPFB and pPFB emissivities turn out to be of the same order of
magnitude. The emissivities of NPBF processes have the same suppression fac-
tor ∼ exp(−2Δ/T ) as MU, NB, MMU and MNB at T < Tc but compared to
the latter the NPBF processes have a large one nucleon phase space volume.
[24] and then [16] also sketched how to incorporate 3P2 pairing (the developed
formalism easily allows to do it) and indicated that the exponential suppression
of the specific heat and the emissivity should be replaced by only a power law
suppression when the gap vanishes at the Fermi sphere poles. This is precisely
the case for the 3P2(| mJ |= 2) pairing, where mJ is the projection of the to-
tal pair momentum onto quantization axis. This idea was then worked out in
[33,34,35] without reference.

Let me make a remark about the history of the development of the under-
standing of these processes, since in several works (see, e.g., [36,35]) a surprise
was expressed as to why these processes were not noticed/included in the cooling
simulations over many years. Despite the fact that the first calculation by [32],
found a correct analytic expression for the emissivity in the case of 1S0 pairing
of neutrons, it underestimated the numerical value of the emissivity by an order
of magnitude. The authors made no statements about the possible dominance
of this process over the MU and hence its importance for cooling simulations.
The asymptotic behavior of their expression for emissivity

ε[nPBF] ∼ 1020T 7
9 exp(−2Δ/T )

when T 	 Δ, T9 = T/109K, [as follows from expression (1b) of [32] and from
their rough asymptotic estimate of the integral (see below (13b))], does not reveal
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a large nucleon phase space factor (which is ∼ 1028) nor appropriate tempera-
ture behavior. Most probably the underestimation of the numerical rate of the
reaction in [32] (we again point out that their analytic expression (1a) is correct)
which obscured the dominance of this process over MU, became the main reason
why this important result remained unnoticed during many years. The reference
[24] overlooked the sign of the polarization diagram involving anomalous Green’s
functions for the case of S-wave pairing; as a result a contribution ∝ g2

A (gA is
axial-vector coupling constant) appeared, which should be absent for S-wave
pairing. It gives, nevertheless, the main contribution in the case of 3P

2 pairing.
A reasonable numerical estimate of the emissivity was presented valid for both
S and P pairings (except case when | mJ |= 2) including NN correlation ef-
fects. Uncertainty of this estimate is within a factor (0.5 ÷ 2) which is allowed
by variation of not very well known correlation factors. Later this estimate was
then incorporated in a cooling simulation code in [26]. The correct asymptotic
behavior of the emissivity is

ε[nPFB,pPFB] ∼ 1028(Δ/MeV)7(T/Δ)1/2exp(−2Δ/T )

for T 	 Δ, which shows a large one-nucleon phase space factor and very mod-
erate T -dependence of the pre-factor. In this manner the value of the reaction’s
rate was related in [24] to the value of the pairing gap. The possibility of the
dominant role of this process (even compared to enhanced MMU and PU rather
than only to MU) was unambiguously stressed. Unfortunately [24] contained a
number of obvious misprints which were partially corrected in subsequent pa-
pers; although the authors take the full responsibility for these misprints, an
attentive reader would have easily detected them. The importance of the NPFB
processes was once more stressed in the review [16]. The first quotation of the
[32] was given in [26]. The latter reference incorporated the most important in-
medium effects in a cooling code, among them the nPBF and pPBF as equally
important processes. The latter (pPBF) process was then rediscovered in [34],
where the authors claim that its contribution to the neutrino emissivity of the
star is negligible, however this is an artefact of their ignorance of correlations in
weak interaction vertices. The work of [36] supported the conclusion of [26] that
the NPBF processes are the dominant cooling process when T < Tc.

The medium modifications of all the above mentioned rates result in a
pronounced density dependence (for NPBF processes mainly via dependence of
the pairing gaps on the density and dependence on the NN correlation fac-
tors), which links the cooling behavior of a neutron star decisively to its mass
[22,23,16,26]. As a result, the above mentioned medium modifications lead to a
more rapid cooling than found in the “standard scenario”. Hence they provide a
possible explanation for the observed deviations of some of the pulsar tempera-
tures from the predictions of the “standard” cooling scenario. In particular, they
provide a smooth transition from the “standard” to the “non-standard” cooling
with increasing central densities of the star, i.e., star masses. Thus by means of
taking into account of most important in-medium effects in the reaction rates
one is indeed able to achieve an appropriate agreement with both the high as
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well as the low observed pulsar temperatures that leads to the new “nuclear
medium cooling scenario”. Using a collection of modern EoS for nuclear mat-
ter, which covered both relativistic as well as non-relativistic models, [26] also
demonstrated the relative robustness of these in-medium cooling mechanisms
against variations in the EoS of dense NS matter (for EoS that allow for a wide
dense hadronic region in NS).

At the initial stage (T > Topac) a newly formed hot NS is opaque for
neutrinos/antineutrinos. Within FOPE model the value Topac was estimated
in [6]. Elastic scatterings were included in [37,38] and pion condensation effect
on the opacity was discussed in [39]. Medium effects dramatically affect the neu-
trino/antineutrino mean free paths, since λν(ν̄) ∝ 1/ | M |2, where M is the
reaction matrix element. Thereby, one-nucleon elastic scattering processes, like
Nν → Nν, are suppressed for energy and momentum transfers ω < qvFN by
NN correlations [24,16,40,41]. Neutrino/antineutrino absorption in two-nucleon
MMU and MNB processes is substantially increased with increasing density
(since |M |2 for MMU and MNB processes increases with the density) [23,24,16].
Thus more massive NS are opaque for neutrinos up to lower temperatures that
also results in a delay of neutrino pulse. Within the QPA for the nucleons
the value Topac was estimated with taking into account of medium effects in
[23,16]. The [42,43,16] considered possible consequences of such a delay for su-
pernova explosions. On the other hand, at T > (1÷ 2)MeV one should take care
of the neutrino/antineutrino radiation in multiple NN scatterings (Landau–
Pomeranchuk–Migdal (LPM) effect) when averaged neutrino–antineutrino en-
ergy, ωνν̄ ∼ several T , becomes to be smaller than the nucleon width ΓN [28].
Numerical evaluations of ΓN in application to MNB processes were done in [44]
and [45] within the Brückner scheme and the Bethe–Salpeter equation, respec-
tively. The LPM effect suppresses the rates of the neutrino elastic scattering
processes on nucleons and it also suppresses MNB rates. For NS of rather low
mass (<∼ M⊙) the suppression of the rates of neutral current processes due to the
multiple collision coherence effect prevails over the enhancement due to the pion
softening, and for sufficiently massive NS (>∼ 1.4M⊙) the enhancement prevails
the suppression. MMU emissivity remains almost unaffected by the LPM effect
since averaged ν̄e energy ∼ pFe is rather large (� ΓN ).

Besides pion and kaon condensates, the possibility of the presence of the
quark matter at sufficiently high baryon densities is under current discussion.
These phases are expected to exist in the most massive NS. In addition, some
discussion is devoted to the possibility of the existence of less massive, stable or
metastable, dense self-bound stars glued by condensates or by strange quarks, cf.
[46,47,16,48,49]. Uncertainty in these predictions are due to the poorly known
EoS of dense matter at high baryon densities. Several possible types of star
models which differ by the values of the MIT bag constant B were discussed in
the literature: ordinary NS without any quark core, hybrid neutron stars (HNS)
with quark matter present only in their deep interiors (for intermediate values
of B), NS with large quark cores (QCNS) surrounded by a narrow hadronic
layer and a typical crust for a NS, and, finally, quark stars (QS) with a tiny
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crust of normal matter and/or without any crust (both for low values of B). If
these objects are produced in supernova explosions within ordinary mechanism
of blowing off the mantle, they must be rather massive HNS. If an extra support
for the blowing off the matter arises, there may appear less massive objects like
QCNS, QS and even objects of arbitrary size.

Special interest in cooling of HNS, QCNS, and QS is motivated by recent
works [50,51] which demonstrated the possibility of diquark condensates char-
acterized by large pairing gaps (Δq

<∼ 100 MeV) in dense quark matter. The
two-flavor (2SC) and the three-flavor (3SC) color superconducting phases allow
for unpaired quarks of one color whereas in the color-flavor locking (CFL) phase
all the quarks are paired. The presence of large quark gap may significantly af-
fect the cooling history of HS, QCNS and QS. Thus it is interesting to confront
this possibility to the observational data. Cooling of QCNS, and QS was dis-
cussed in [52,53] while the case of HNS was considered in [54,53]. In contrast to
[52,54] more recent work [53] incorporated the heat transport which turns out
to be important over a longer timescales compared to the case where the color
superconducting quark matter is absent.

This review is organized as follows. Sect. 2 discusses basic ideas of the
Fermi liquid approach for description of nuclear matter. The NN interaction
amplitude is constructed with an explicit treatment of the long-ranged soft pion
mode and vertex renormalizations due to NN correlations. The meaning of the
pion softening effect is clarified and a comparison of MOPE and FOPE models is
given. Also a renormalization of the weak interaction in NS matter is performed.
Sect. 3 discusses the cooling of NS at T < Topac. A comparison of the emissivities
of MMU and MU processes shows a significant enhancement of the in-medium
reaction rates. Then we discuss DU-like processes and demonstrate the medium
effect due to vertex renormalizations. The role played by the in-medium neutrino
radiation mechanisms in the cooling evolution of NS is then demonstrated within
a realistic cooling simulation. Next we consider influence of the in-medium effects
on the neutrino mean free path at initial stage of NS cooling. The essential role of
the multiple NN collisions is discussed. Sect. 4 presents OTF in non-equilibrium
closed diagram technique in the framework of QPA for the nucleons as well as
beyond the QPA incorporating genuine particle width effects. In the last Sect.
5, following the [53], we review recent results on the cooling of HNS.

2 Nuclear Fermi liquid description

2.1 NN interaction. Separation of hard and soft modes

At temperatures of our interest (T 	 εFn) neutrons are only slightly excited
above their Fermi sea and all the processes occur in a narrow region in the vicinity
of εFn. In such a situation the Fermi liquid approach seems to be the most
efficient one. Within this approach the diagrams which are important on the large
length-scales are treated explicitly whereas those diagrams which are important
on short-scales are represented by local quantities given by phenomenological,
so called, Landau-Migdal (LM) parameters. Thus using the argumentation of
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the Fermi liquid theory [55,56,57,16] the retarded NN interaction amplitude is
presented as follows (see also [58])

� � � (1)

where

� � � (2)

The solid line represents a nucleon, whereas double-line, a Δ isobar. The double-
wavy line corresponds to an exchange of a free pion with inclusion of the con-
tributions of the residual S wave πNN interaction and ππ scattering, i.e. the
residual irreducible interaction to the nucleon particle-holes and delta-nucleon
holes. The full particle-hole, delta-nucleon hole and pion irreducible block (first
block in (2)) is by its construction essentially more local than contributions given
by explicitly presented graphs. Therefore, it is parameterized with the help of
the LM parameters. In the standard Landau Fermi liquid theory fermions are
supposed to be at their Fermi surface and the Landau parameters are further
expanded in Legendry polynomials with respect to the angle between fermionic
momenta. Fortunately, only zero and first harmonics enter in the physical quan-
tities. The momentum dependence of the residual part of nuclear forces is ex-
pected to be not as pronounced and one can avoid performing this expansion.
Then these parameters, i.e. fnn, fnp and gnn, gnp in scalar and spin channels
respectively, are considered as weakly momentum dependent quantities. In prin-
ciple, they should be calculated as functions of the density, neutron and proton
concentrations, energy and momentum but as a first approximation one can use
those extracted from the analysis of the experimental data on atomic nuclei.

The part of the interaction involving Δ isobar is constructed in a similar
way

� � � (3)

The main part of the NΔ interaction is due to the pion exchange. Although
information on local part of the NΔ interaction is rather scarce, one can deduce
[16,19] that the corresponding LM parameters are essentially smaller then those
for NN interaction. Apart from that, at small transferred energies ω 	 mπ the
Δ–nucleon hole contribution is a smooth function of ω and k in contrast to the
nucleon–nucleon hole (NN−1) contribution, which is not For this reason, and
also for simplicity, we shell neglect the first graph on the right-hand side of (3).

A straightforward resummation of (1) in neutral channel yields [24,16]

ΓR
αβ �

�

�

�

�

�C0
(
FR

αβ + ZR
αβσ1 · σ2

)
+ f2

πNT R
αβ(σ1 · k)(σ2 · k), (4)



476 D.N. Voskresensky

FR
αβ = fαβγ(fαβ), ZR

nn = gnnγ(gnn), ZR
np = gnpγ(gnn), α, β = (n, p),

T R
nn = γ2(gnn)DR

π0 , T R
np = −γppγ(gnn)DR

π0 , T R
pp = γ2

ppD
R
π0 ,

γ−1(x) = 1− 2xC0A
R
nn, γpp = (1− 4gC0A

R
nn)γ(gnn), (5)

fnn = fpp = f + f ′, fnp = f − f ′, gnn = gpp = g + g′, and gnp = g − g′,
dimensional normalization factor is usually taken to be C0 = π2/[mNpF (#0)] �
300 MeV· fm3 � 0.77m−2

π , DR
π0 is the full retarded Green function of π0, Aαβ is

the corresponding NN−1 loop (without spin degeneracy factor 2)

Aαβ =

�

���

, Ann(ω � q) � m∗2
n (4π2)−1

(
ln

1 + vFn

1− vFn
− 2vFn

)
, (6)

Ann � −m∗
npFn(2π2)−1, for ω 	 qvFn, q 	 2pFn, and we for simplicity ne-

glect proton hole contributions because of the small concentration of protons.
Resummation of (1) in the charged channel yields

Γ̃R
np
�

p

n

p

n

�C0

(
F̃R

np + Z̃R
npσ1 · σ2

)
+ f2

πN T̃ R
np(σ1 · k)(σ2 · k) , (7)

F̃R
np = 2f ′γ̃(f ′), Z̃R

np = 2g′γ̃(g′), T̃ R
np = γ̃2(g′)DR

π− , (8)

γ̃−1(x) = 1− 4xC0A
R
np .

The LM parameters are rather unknown for isospin asymmetric nuclear matter
and for # > #0. Although some evaluations of these quantities have been done,
much work is still needed in order to arrive at convincing results. Therefore for
estimates we will use the values extracted from experiments on atomic nuclei.
Using the argumentation of a relative locality of these quantities we will suppose
the LM parameters to be independent on the density for # > #0. One then can
expect that the most uncertain will be the value of the scalar constant f due
to the essential role of the medium-heavy σ meson in this channel. But this
parameter does not enter the tensor force channel which is the most important
for our purposes. Unfortunately, there are also essential uncertainties in the
numerical values of some of the LM parameters even for atomic nuclei. These
uncertainties are, mainly, due to attempts to get the best fit to experimental
data in each concrete case by slightly modifying parameterization used for the
residual part of the NN interaction. E.g., calculations of [56] gave f � 0.25,
f ′ � 1, g � 0.5, g′ � 1 whereas [59,60,61], by including QP renormalization
of the pre-factors, derived the values f � 0, f ′ � 0.5 ÷ 0.6, g � 0.05 ± 0.1,
g′ � 1.1± 0.1.

Typical energies and momenta entering NN interaction of our interest are
ω � 0 and k � pFn. Then a rough estimate yields γ(gnn, ω � 0, k � pFn, # =
#0) � 0.35 ÷ 0.45. For ω = k � T which is typical for the weak processes with
participation of νν̄ one has γ−1(gnn, ω � k � T, # = #0) � 0.8÷ 0.9.
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2.2 Virtual Pion Mode

A resummation of diagrams yields the following Dyson equation for pions

� � � � �
R
res

(9)

The πNΔ full-dot-vertex includes a background correction due to the presence
of higher resonances, ΠR

res is the residual retarded pion self-energy that includes
the contribution of all the diagrams which are not presented explicitly in (9),
such as S wave πNN and ππ scatterings (included by double-wavy line in (2)).
The full vertex takes into account NN correlations

� � � (10)

Due to this fact the nucleon particle-hole part of Ππ0 is ∝ γ(gnn) and the nucleon
particle-hole part of Ππ± is ∝ γ(g′). The value of the NN interaction in the pion
channel is determined by the full pion propagator at small ω and k � pFn, i.e. by
the quantity ω̃2(k) = −(DR

π )−1(ω = 0, k, μπ). Typical momenta of our interest
are k � pFn. Indeed the momenta entering the NN interaction in MU and MMU
processes are k = pFn, the momenta governing the MNB are k = k0 [23] where
the value k = k0 � (0.9 ÷ 1)pFn corresponds to the minimum of ω̃2(k). The
quantity ω̃ ≡ ω̃(k0) has the meaning of the effective pion gap. It is different for
π0 and for π± since neutral and charged channels are characterized by different
diagrams permitted by charge conservation, thus also depending on the value of
the pion chemical potential, μπ+ �= μπ− �= 0, μπ0 = 0. For T 	 εFn, εFp, one has
μπ− = μe = εFn − εFp, as follows from equilibrium conditions for the reactions
n→ pπ− and n→ peν̄.

A change of the sign of ω̃2 signals a phase transition to a pion condensate.
The typical density dependence of ω̃2 is shown in Fig. 3. At # < (0.5÷0.7)#0,

one has ω̃2 = m2
π −μ2

π. For such densities the value ω̃2(pFn) essentially deviates
from m2

π − μ2
π tending to m2

π + p2
Fn − μ2

π in small density limit.
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Fig. 3. Effective pion gap (for μπ0 = 0) versus baryon density, see [16].
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At the critical point of the pion condensation (# = #cπ) the value ω̃2 changes
its sign when the ππ fluctuations are artificially switched off (dashed line in
Fig. 3).

In reality ππ fluctuations are significant in the vicinity of the critical
point and there occurs a first-order phase transition to a inhomogeneous pion-
condensate state [62,63,64]. Therefore there are two branches (solid curves in
Fig. 3) with positive and respectively negative values for ω̃2. The calculations
of [64] demonstrated that at # > #cπ the free energy of the state with ω̃2 > 0,
where the pion mean field is zero, becomes larger than that of the corresponding
state with ω̃2 < 0 and a finite mean field. Therefore at # > #cπ the state with
ω̃2 > 0 is metastable and the state with ω̃2 < 0 and the pion mean field ϕπ �= 0
becomes the ground state.

The quantity ω̃2 demonstrates how much the virtual (particle-hole) mode
with pion quantum numbers is softened at a given density. The ratio α =
Dπ[med.]/Dπ[vac.] � 6 for # = #0, ω = 0, k = pFN and for isospin symmetric
nuclear matter. However this essential so called “pion softening” [57] does not
significantly enhance the NN scattering cross section because of a simultaneous
essential suppression of the πNN vertex by NN correlations. Indeed, the ratio
of the NN cross sections calculated with FOPE and MOPE is

R =
σ[MOPE]
σ[FOPE]

� γ4(g′, ω � 0, k � pFN )(m2
π + p2

FN )2

ω̃4(pFN )
, (11)

and for # = #0 we have R <∼ 1, whereas for # = 2#0 we already get R ∼ 10.
As follows from numerical estimates of different γ factors entering (4) and

(7), the main contribution to NN interaction for # > #0 is given by MOPE

� (12)

whether this channel (T ∝ (σ1 · k)(σ2 · k)) of the reaction is not forbidden or
suppressed by specific reasons as symmetry, small momentum transfer, etc.

The # meson contribution to NN interaction is partially included in gαβ ,
other part contributing to T and T̃ is minor (∝ ω̃2/m�

2). Indeed, using that
(σ1 × k)(σ2 × k) = k2σ1σ2 − (σ1k) · (σ2k) the ρ exchange can be cast as

δΓR
N1N2

=
(

fρ

mρ

)2{
k2(σ1σ2)γ2

[ω2 −m2
ρ − k2 −ΠR

ρ ]
− (σ1k)(σ2k)γ2

[ω2 −m2
ρ − k2 −ΠR

ρ ]

}
. (13)

We may omit the contribution ReΠR
ρ in the Green function since ReΠR

ρ 	 m2
ρ

for ρ ∼ m3
π under consideration; γ factor is the same as for the correspond-

ing pion (charged or neutral). The first term is supposed to be included in
phenomenological value of the corresponding Landau–Migdal parameter lead-
ing to its momentum dependence. Due to this, the value of g′ gets a 30% de-
crease (rather then an increase discussed in some works) with the momentum
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at k = pFN compared to the corresponding value at k = 0, see [65]. Thus one
can think that g′(0) > g′(pFN ). Second term can be dropped since it is small
(<∼ 1/30 of MOPE contribution at ρ = ρ0).

Another concern [66,67] was expressed in connection with the quasielastic
polarization transfer experiment at LAMPF, EMC experiment and the Drell–
Yan experiment at Fermi Lab, all of which did not observe, as predicted in
several works, a pronounced pion excess in nuclei. First optimistic estimates
demonstrated a pion excess at (15-30)% level which was ruled out by different
models that analyzed the above mentioned experimental results including an
artificially enhanced pion contribution and suppressing other important contri-
butions. However it may well be that only in a very narrow vicinity of #cπ (far
beyond #0) pion fluctuations grow at T = 0 and only at T �= 0 pion excess must
essentially grow in substantially wider density interval [63,64].

The physical reason of a contribution of virtual pions at ω < kvF is clear. It
is the well known Landau damping associated with possibility of the virtual pion
decay to a nucleon particle-hole. As known from πN scattering experiments, pi-
ons interact with nucleons. Thus there must be a contribution of virtual pions
to the sum-rule for pion spectral function. There is no other way out. Therefore,
to a question “Where virtual pions are?” we would still suggest an old fashioned
answer: “They are hidden inside the matter”. The only question which remains
is: “What is the actual value of the pion excess?” To find a proper answer one
needs to elaborate, besides the pionic contribution, all relevant specific contri-
butions related to the phenomenon analyzed in the given concrete experiment.
E.g., quasielastic polarization transfer data are reasonably fitted with a slightly
increased value of the Landau–Migdal parameter g′ and with inclusion of S wave
repulsion at small energies [16,68,69], EMC experiment is reproduced with an
inclusion of the soft pion mode and other relevant effects [70].

Thus instead of FOPE+# exchange, as a model of NN interaction, which
was used by [6] in their calculation of the emissivities of the two-nucleon re-
actions, one should use the full NN interaction given by (4) and (7) or, in a
simplified version, one should use its approximation by the MOPE part only.

2.3 Renormalization of the weak interaction

The full weak coupling vertex that takes into account the NN correlations is
determined by (10) where now the wavy line should be replaced by a lepton pair.
Thus for the vertex of our interest, N1 → N2lν̄, we obtain [24,16]

Vβ =
G√
2

[γ̃(f ′)l0 − gAγ̃(g′)lσ] , (14)

for the β decay and

Vnn = − G

2
√

2
[γ(fnn)l0 − gAγ(gnn)lσ] , V N

pp =
G

2
√

2
[κppl0 − gAγpplσ] , (15)

κpp = cV − 2fnpγ(fnn)C0Ann, γpp = (1− 4gC0Ann) γ(gnn), (16)
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for processes on the neutral currents N1N2 → N1N2νν̄, Vpp = V N
pp + V γ

pp,
G � 1.17 · 10−5 Gee−2 is the Fermi weak coupling constant, cV = 1− 4 sin2 θW ,
sin2 θW � 0.23, gA � 1.26 is the axial-vector coupling constant, and lμ =
ū(q1)γμ(1− γ5)u(q2) is the lepton current. The pion contribution ∼ q 2 is small
for typical | q |� T or pFe, and for simplicity is omitted. The in medium the
value of gA (i.e. g∗

A) slightly decreases with the density which can be easily incor-
porated, cf. the Brown–Rho scaling idea [71]. Please notice that with a decrease
of g∗

A, in particular, the value #cπ increases remaining however finite (� 2#0
according to [72] where this decrease of g∗

A up to 1 was discussed) due to attrac-
tive contribution of the Δ isobar in (9), whereas one would expect #cπ →∞ for
g∗

A → 1 ignoring Δ contribution.
The γ factors renormalize the corresponding vacuum vertices. These factors

are essentially different for different processes involved. The matrix elements of
the neutrino/antineutrino scattering processes Nν → Nν and of MNB behave
differently in dependence on the energy-momentum transfer and whether N = n
or N = p in the weak coupling vertex. Vertices

N

�

N

�

� N

N

��

�

(17)

are modified by the correlation factors (5) and (8). For N = n these are
γ(gnn, ω, q) and γ(fnn, ω, q) which lead to an enhancement of the cross sections
for ω > qvFn and to a suppression for ω < qvFn. The renormalization of the
proton vertex (vector part of V N

pp + V γ
pp) is governed by the processes [24,73]

pp pp

p

p

n

n
��

��

�

�

p

p

�m

e

e
��

��

�

� ���
(18)

which are forbidden in the vacuum. For the systems with 1S0 proton–proton
pairing, ∝ g2

A contribution to the squared matrix element (see (15)) is compen-
sated by the corresponding contribution of the diagram with anomalous Green
functions of protons. The vector current term is ∝ c2V in vacuum whereas it is
∝ κ2

pp in medium (according to the first graph (18)). Thereby the correspond-
ing vertices with participation of proton are enhanced in medium compared to
their small vacuum value (∝ c2V � 0.006) which leads to an enhancement of
the cross sections, up to ∼ 10÷ 102 times for 1.5÷ 3#0 depending on parameter
choice. It does not contradict to the statement of [24] that correlations are rather
suppressed in the weak interaction vertices. at # ≤ #0. The enhancement with
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the density comes from estimate (6) that directly follows from equation (2.30)
of [24]. Also the enhancement factor (up to ∼ 102) comes from the virtual in-
medium photon (γm) whose propagator contains 1/m2

γ ∼ 1/e2, where mγ is the
effective spectrum gap, that compensates small e2 factor from electromagnetic
vertices, see [73]. It is included by means of the replacement V N

pp → Vpp. Other
processes permitted in intermediate states like processes with pp−1 and with
the pion are suppressed by a small proton density and by q2 ∼ T 2 pre-factors,
respectively. First diagram (18) was considered in [24], where the pPBF process
was suggested, and then in [16,26], and it was shown that nPBF and pPBF
processes may give contributions of the same order of magnitude. Finally, with
electron and nucleon correlations included, we recover this statement and nu-
merical estimate [24,26] (in spite of the mentioned misprints in the result [24]).
Several subsequent papers [34,74,35] rediscovered pPBF process,however ignored
the nucleon and electron correlation effects. (Although the authors were person-
ally informed, they continued to insist [75] on their incorrect treatment, giving
priority to their result.) Contribution of second diagram for pPFB process was
recently incorporated in [76].

The paper [27] gives another example demonstrating that, although the
vacuum branching ratio of the kaon decays is Γ (K− → e− + νe)/Γ (K− →
μ− + νμ) ≈ 2.5 × 10−5, in medium (due to Λp−1 decays of virtual K−) it
becomes of the order of unity. Thus we again see that, depending on which
reaction channel is considered, in-medium effects may either strongly enhance
the reaction rates or substantially suppress them. The ignorance of these effects
may lead to misleading results; one may loose order of magnitude factors, while
struggling for a numerical factors ∼ 1.

2.4 Inconsistencies of FOPE model

Since FOPE model became the basis of the “standard scenario” of cooling sim-
ulations we would like first to demonstrate the principal inconsistencies of the
model for the description of interactions in dense (# >∼ #0) baryon medium. The
only diagram in FOPE model which contributes to the MU and NB is

f�N

f�N

(19)

Dots symbolize FOPE. This is the first non-zero Born approximation diagram,
i.e. second order perturbative contribution in fπN . In order to be theoretically
consistent one should use perturbation theory up to the very same second order
in fπN for all the quantities. E.g., pion spectrum is then determined by pion
polarization operator expanded up to the very same order in fπN

ω2 � m2
π + k2 + ΠR

0 (ω, k, #), ΠR
0 (ω, k, #) =

f�N

f�N

(20)
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The value of Π0(ω, k, #) is easily calculated and the result contains no uncertain
parameters. For ω → 0, k � pF of interest to us and for isospin symmetric
matter

ΠR
0 � −α0 − iβ0ω, α0 �

2mNpF k
2f2

πN

π2 > 0, β0 �
m2

Nkf2
πN

π
> 0. (21)

Substituting this expression in (20) we obtain a solution with iω < 0 already for
# > 0.3#0, that would mean appearance of the pion condensation. Indeed, the
mean field begins to increase with the time as ϕ ∼ exp(−iωt) ∼ exp(αt/β) until
repulsive ππ interaction will not stop its growth. But it is experimentally proven
that there is no pion condensation in atomic nuclei, i.e. even at # = #0. The
puzzle is resolved as follows. The FOPE model does not work for such densities.
One should replace the FOPE by the full NN interaction given by (4), (7). The
essential part of this interaction is due to MOPE with vertices corrected by NN
correlations. Also the NN−1 part of the pion polarization operator is corrected
by NN correlations. Thus

� ΠR
0 (ω, k, #)γ(g′, ω, k, #) (22)

is suppressed by the factor γ(g′, ω = 0, k � pF , # � #0) � 0.35÷ 0.45. The final
solution of the dispersion relation (20), now with full Π instead of Π0, yields
iω > 0 for # = #0 whereas the solution with iω < 0, which shows the beginning
of pion condensation, appears only for # > #cπ > #0.

3 Neutrino cooling of neutron stars

3.1 Emissivity of MMU process

Since DU process is forbidden up to sufficiently high density #cU , the main contri-
bution for # < #cU and Topac > T > Tc comes from MMU processes schematically
presented by the two diagrams of Fig. 1. MNB reactions give smaller contribu-
tion [23]. For densities #	 #0 the main part of the NN interaction amplitude is
given by the residual NN interaction. In this case the NN interaction amplitude
can be better treated within the T matrix approach which sums up the ladder
diagrams in the particle-particle channel rather than by LM parameters. Calcula-
tions of MNB processes with the vacuum T matrix [77] found essentially smaller
emissivity than that given by the FOPE. Also the in-medium modifications of
the T matrix additionally suppress the rates of both MMU and MNB processes,
see [78]. Thus even at small densities the FOPE model may give only a rough
estimate of the emissivity of two nucleon processes. At # >∼ (0.5 ÷ 0.7) #0 the
reactions in particle-hole channel and more specifically those with participation
of the soft pion mode begin to dominate.

The evaluations of [23,42,43,16] showed that the dominating contribution to
MMU rate comes from the second diagram of Fig. 1, namely from contributions
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to it given by the first two diagrams of the series
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(23)

whereas the third diagram, which naturally generalizes the corresponding
MU(FOPE) contribution, gives only a small correction for # >∼ #0. The emis-
sivity from the two first diagrams in a simplified notation [16,26] reads

ε MMU [MOPE] � 2.4 · 1024 T 8
9

(
#

#0

)10/3 (m∗
n)3m∗

p

m4
N

[
mπ

αω̃π0(pFn)

]4
×
[

mπ

αω̃π±(pFn)

]4
Γ 8 F1ζ(Δn) ζ(Δp)

erg
cm3 sec

, (24)

where T9 = T/109 K is the temperature, m∗
n and m∗

p are the nonrelativistic
effective neutron and proton masses, and the correlation factor Γ 8 is roughly

Γ 8 � γ2
β(ω � pFe, q � pFe)γ2(gnn, ω � 0, k = pFn)γ̃4(g′, 0, pFn),

γ 2
β(ω, q) =

γ̃2(f ′, ω, q) + 3g2
Aγ̃

2(g′, ω, q)
1 + 3g2

A

, (25)

while the second term in the prefactor,

F1 � 1 +
3

4γ̃2(g′, 0, pFn)γ2
β(ω � pFe, q � pFe)

(
#

#0

)2/3

, (26)

is the contribution of the pion decay from intermediate states (first diagram
(23)). The quantity Γ effectively accounts for an appropriate product of the
NN correlation factors in different πN1N2 vertices. For charged pions the value
μπ �= 0 is incorporated in the expression for the effective pion gap, for neutral
pions μπ = 0. The value α ∼ 1 depends on condensate structure, α = 1 for
# < #cπ, and α =

√
2 taking account of the new excitations on the ground of the

charged π condensate vacuum for # > #cπ. The factor

ζ(ΔN ) �
{

exp (−ΔN/T ) T ≤ TcN ,

1 T > TcN , N = (n, p)
(27)

estimates the suppression caused by the nn and pp pairings. Deviation of these
factors from simple exponents can be incorporated as in [35].
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The ratio of the emissivities of MMU(MOPE) and MU(FOPE) is roughly

εMMU [MOPE]
εMU [FOPE]

� 103 γ
2(gnn, 0, pFn)γ̃2(g′, 0, pFn)

ω̃4
π0(pFn)ω̃4

π±(pFn)
(#/#0)

10/3
. (28)

For # � #0 this ratio is ∼ 10 whereas being estimated with the only third diagram
in (23) it would be less then unit.

3.2 Emissivity of DU-like processes

NPBF processes. The one-nucleon processes with neutral currents given by
the second diagram (17) for N = (n, p) are forbidden at T > Tc by the energy-
momentum conservations but they can occur at T < Tc. Then physically the
processes relate to NPBF, see Fig. 2. However they need special techniques to
be calculated [32,24]. These processes n→ nνν̄ and p→ pνν̄ play very important
role in the cooling of superfluid NS, see [24,25,16,26,36,35]. The emissivity for 3
types of neutrinos is given by [24,25]

ε[nPBF] =
3 · 4G2

(
ξ1γ

2(fnn) + ξ2g
∗2
A γ2(gnn)

)
pFnm

∗
nΔ

7
n

15π5 I

(
Δn

T

)
� ζ · 1028

(
#

#0

)1/3
m∗

n

mN

(
Δn

MeV

)7

I

(
Δn

T

)
erg

cm3 · sec , T < Tcn, (29)

where ξ1 = 1, ξ2 = 0 for S-pairing and ξ1 = 2/3, ξ2 = 4/3 for P -pairing; compare
with the result [35] where ξ1 = 1, ξ2 = 2 were obtained. I removed some misprints
existed in [32,24,25,16]. For neutrinos ω(q) = q, and therefore, the correlations
are not so essential as it would be for ω 	 q. Taking γ2 � 1.3 in the range of
S-pairing we get ζ � 5 whereas for the P -pairing with g∗

A � 1.1 we obtain ζ � 9,
in agreement with numerical evaluations of [24] (ζ � 7) which were used later
in the cooling simulations of [26]. Here I(x) =

∫∞
0 ch5ydy/ (exp(xchy) + 1)2,

with the asymptotics I(x � 1) � exp(−2Δ/T )
√

πT/4Δ, which provides also
the appropriate asymptotic temperature behavior of (29). The emissivity of the
process p→ pνν̄ is given by [24]

ε(pPBF) =
12G2(ξ1κ2

pp + ξ2g
∗2
A γ2

pp + ξ3)pFpm
∗
pΔ

7
p

15π5 I

(
Δp

T

)
, T < Tcp, (30)

and ξ2 = 0 for protons paired in S-state in NS matter, ξ3 <∼ 1 is due to the second
diagram (18) and has a complicated structure [73,76]. For the process (30) the
part of NN and ee correlations is especially important. One has κ2

pp ∼ 0.05÷1 for
1÷3#0 and ξ3 ∼ 1, and κ2

pp+ξ3 ∼ 1 instead of a small c2V � 0.006 value in absence
of correlations; see the discussion in the subsection 2.3. Therefore, in agreement
with [24,26,73,76], the emissivity of the process p→ pνν̄ can be comparable with
that for n→ nνν̄ depending on the relative magnitudes of Δp and Δn.

NPBF processes are very efficient for T < Tc and are competing with MMU
processes. The former win for not too massive stars. The analysis of the above



Medium Effects in Neutrino Cooling 485

processes supports also our general conclusion on the crucial role of in-medium
effects in the cooling scenario.

Pion (kaon) condensate processes. The P wave pion condensate can
be of three types: π+

s , π±, and π0 with different values of the critical densities
#cπ = (#cπ± , #cπ+

s
, #cπ0), see [57]. Thus above the threshold density for the pion

condensation of the given type, the neutrino emissivity of the MMU process (24)
is to be supplemented by the corresponding PU processes

��

p

��
c
�K�

c
�

e
n n

�

��
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��
c

e
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�

��

n
��
c

�
n n

���

(31)

The emissivity of the charged pion condensate processes with inclusion of the
NN correlation effect (in a simplified treatment) renders, see [22,16],

ε[PU] � 7 · 1026 pFn

mπ

m∗
nm

∗
p

m2
N

γ2
β(pFe, pFe) γ̃2(g′, 0, pFn)T 6

9 sin2θ
erg

cm3sec
. (32)

Here # > #cπ and sin θ �
√

2|ω̃2|/m2
π for θ 	 1. Of the same order of magnitude

are the emissivities of other possible π condensate reactions, e.g. for nπ0
c → npeν̄

process at θ 	 1 the numerical factor is about two times larger. Since π±

condensation probably reduces the energy gaps of the superfluid states by an
order of magnitude, see [79], we may assume that superfluidity vanishes above
#cπ. Finally we note that although the PU processes have genuinely one-nucleon
phase-space volumes, their contribution to the emissivity is suppressed relative
to the DU by an additional γ̃2(g′, 0, pFn) suppression factor due to existence of
the extra (πNN) vertex in the former case.

Fig. 4 compares the mass dependence of the neutrino cooling rates Lν/CV ,
Lν is the neutrino luminosity, CV is the heat capacity, for MMU(MOPE) and
MU(FOPE) for non-superfluid matter. For the solid curves, the neutrino emis-
sivity in pion-condensed matter is taken into account according to (32) and (24)
with the parameter α =

√
2. As a conservative estimate we took #cπ � 3#0. The

dashed curves correspond to the model where no pion condensation is allowed.
As one sees, the medium polarization effects when included in MMU may result
in three order of magnitude increase of the cooling rate for the most massive
stars. Even for stars of a rather low mass the cooling rate of MMU is still several
times larger than for MU because even in this case the most efficient rate is given
by the reactions shown in the right diagram in Fig. 1 (first two diagrams of (23)).
The cooling rates for the NS of M = 1.8M� with and without pion condensate
differ only moderately (by a factor of 5 in this model). If we had used a smaller
value of #cπ the ratio of PU emissivity to that of MMU would decrease and could
even become <∼ 1 in the vicinity of #cπ. In contrary, the reaction rates for the
FOPE model are rather independent of the star’s mass for the stars with masses
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Fig. 4. Cooling rate due to neutrino emission as a function of star mass for a repre-
sentative temperature of T = 3 × 108 K. Superfluidity is neglected.

below the critical value 1.63M⊙, at which transition into the pion condensed
phase occurs after which they jump a value typical for PU. It is to be stressed
that contrary to FOPE model, the MOPE model [23] consistently takes into
account the pion softening effects for # < #cπ and both the pion condensation
and pion softening effects in the condensate for # > #cπ. For # > #cK the kaon
condensate processes come into play. The most popular idea is the S wave K−

condensation (e.g. see [13]) which is allowed at μe > m∗
K− due to possibility of

the reaction e → K−ν. Analogous condition for the pions, μe > m∗
π− , is not

fulfilled owing to a strong S wave πNN repulsion [57,16] (again an in-medium
effect!) otherwise S wave π− condensation would occur at smaller densities than
K− condensation. The neutrino emissivity of the K− condensate processes is
given by equation analogous to (32) with a different NN correlation factor and
an additional suppression factor due to a small contribution of the Cabibbo an-
gle. However qualitatively the scenario that permits kaon condensate processes
is analogous to that with the pion condensate processes discussed above.

Other resonance processes. There are many other reaction channels al-
lowed in the medium. For example any Fermi liquid permits propagation of zero
sound excitations of different symmetry, which are related either to the pion or
the quanta of a more local interaction represented here by fα,β and gα,β . These
excitations being present at T �= 0 may also participate in the neutrino reactions.
The most essential contribution comes from the neutral current processes [23]
given by first two diagrams of the series

rst two diagrams of the series

n
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���
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n
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n

��

� ���

(33)
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Here the dotted line is a zero sound quantum of appropriate symmetry. These are
the resonance processes (the second, of DU-type) analogous to those processes
going on the condensates with the only difference that the rates of reactions with
zero sounds are proportional to the thermal occupations of the corresponding
spectrum branches whereas the rates of the condensate processes are propor-
tional to the modulus squared of condensate mean field. The contribution of the
resonance reactions is as a rule rather small due to small phase space volume
(q ∼ T ) associated with the zero sounds. Please also bear in mind the analogy
of the processes (33) with the corresponding phonon processes in the crust.

DU processes. The proper DU processes in matter, as n → pe−ν̄e and
pe− → nνe,

n

p

��

e

�

p

e

n

�

(34)

should also be treated with the full vertices. They are forbidden up to the density
#cU when triangle inequality pFn < pFp + pFe begins to fulfill. For traditional
EoS like that given by the variational theory [18] DU processes are permitted
for # > 5#0. The emissivity of the DU processes is

εDU � 1.2 · 1027m
∗
nm

∗
p

m2
N

( μl

100MeV

)
γ2

βmin [ζ(Δn), ζ(Δp)]T 6
9

erg
cm3 sec

, (35)

where μl = μe = μμ is the chemical potential of the leptons in MeV. In addition
to the usually exploited result [15], (35) contains γ2

β pre-factor (14) due to NN
correlations in the β decay vertices, see [24,26].

It was realized in [80] that the softening of the pion mode in dense neu-
tron matter could also give rise to a rearrangement of single-fermion degrees of
freedom due to violation of Pomeranchuk stability condition for # = #cF < #cπ.
It may result in a appearance of an extra Fermi sea for #cF < # < #cπ and
for small momenta p < 0.2pFn, that in its turn opens a DU channel of neu-
trino cooling of NS from the corresponding layer. Due to the new feature of a
temperature-dependent neutron effective mass, m∗

n ∝ 1/T , we may anticipate an
extra essential enhancement of the DU process, corresponding to a reduction in
the power of the temperature dependence from T 6 to T 5. At early hot stage of
NS thermal evolution this layer becomes opaque for the neutrinos thus slowing
the neutrino transport from the massive NS core to the exterior.

Based on the Brown–Rho scaling idea [71], we argued in [81] that for the
charged # meson condensation at a density relevant to NS (#c� ∼ 3#0 if m∗

�

would drop to m�/2 at this density). If happened, it would open DU reaction
already for # < #c� and close it for # > #c� due to an essential modification of
the nuclear asymmetry energy.
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Fig. 5. Cooling of non-superfluid NS models of different masses constructed for
the HV EOS [26]. Two graphs refer to cooling via MU(FOPE) +PU (left) and
MMU(MOPE)+PU (right). In both cases, pion condensation is taken into account
for the solid curves at � > �cπ, i.e. for M > 1.6M� (�cπ is chosen to be 3�0). The
dashed curves in the right graph refer to a somewhat larger value of ω̃2(pFn), without
pion condensation. The observed luminosities are labeled by dots. Possibilities of Fermi
sea rearrangement and �± condensation are ignored.

3.3 Comparison with soft X ray data

The heat transport within the crust of NS establishes homogeneous density pro-
file indexCrust at times <∼ (1 ÷ 10)yr. After that time the subsequent cooling
is determined by the simple relation CV Ṫ = −L, where CV =

∑
i CV,i and

L =
∑

i Li are the sums of the partial contributions to the heat capacity (spe-
cific heat integrated over the volume) and the luminosity (emissivity integrated
over the volume).

The nucleon pairing gaps are rather purely known. Therefore one may vary
them. The “standard” and “nonstandard” scenarios of the cooling of NS of sev-
eral selected masses for suppressed gaps are demonstrated in the left panel of
Fig. 5, [26]. Depending on the star mass, the resulting photon luminosities are
basically either too high or too low compared to those given by observations.
The situation changes, if the MMU process (24) is included. Now, the cooling
rates vary smoothly with the star mass (see right panel of Fig. 5) such that the
gap between standard and non-standard cooling scenarios is washed out. More
quantitatively, by means of varying the NS mass between (1 ÷ 1.6) M⊙, one
achieves an agreement with a large number of observed data points. This is true
for a wide range of choices of the ω̃2 parameterization, independently whether
pion (kaon) condensation can occur or not. Two parameterizations presented in
Fig. 5 with pion condensation for # > 3#0 and without differ only in the range
which is covered by the cooling curves. The only point which does not fall in
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Fig. 6. Cooling of NS with different masses constructed for the HV EOS [26]. The
cooling processes are MU-VS86, PU (only solid curves), NPBF, PPBF, and DU (only
in the right graph). The dashed curves refer to the M = 1.7 and 1.9M� models without
pion condensate. Possibilities of Fermi sea rearrangement and �± condensation are
ignored.

the range covered by the cooling curves correspond to the hottest known pulsar
PSR 1951+32. The other three points which, as shown in the right panel of the
Fig. 5, are also not fitted by the curves can be easily fitted by slight changes
of the model parameters. The high luminosity of PSR 1951+32 may be due to
internal heating processes, cf. [10].

We turn now to cooling simulations where the MU, NPBF, DU and PU
take place simultaneously. Parameters of the pairing gaps are from Fig. 6 of [26].
Fig. 6 shows the cooling tracks of stars of different masses, computed for the
HV EoS. Very efficient at T < Tc become to be NPBF processes which compete
with MMU processes. The former prevail for not too massive stars in agreement
with estimation [24]. The DU process is taken into account in the right graph,
whereas it is neglected in the left graph. The solid curves refer again to the ω̃2

parameterization with phase transition to pion condensate, the dashed curves to
the one without phase transition (see Fig. 4). For masses in the range between
1.0 and 1.6 M�, the cooling curves pass through most of the data points. We
again recognize a photon luminosity drop by more than two orders of magnitude
for the 1.7 M� mass star with pion condensate, due to suppression of the pairing
gaps in this case. This drop is even larger if the DU is taken into account (right
graph). This allows to account for the photon luminosity of PSR 1929+10.

Thus, comparison with the observed luminosities shows that one gets quite
good agreement between theory and observations if one includes into consider-
ation all available in-medium effects assuming that the masses of the pulsars
are different. We point out that the description of these effects is constructed in



490 D.N. Voskresensky

essentially the same manner for all the hadronic systems as NS, atomic nuclei
and heavy ion collisions, cf. [16,58].

3.4 Neutrino opacity

The importance of the in-medium effects for the description of neutrino trans-
port at the initial stages of NS cooling was discussed in [23,42,43,16], where
correlation effects, pion softening and pion condensation (at # > #cπ) were taken
into account. The neutrino/antineutrino mean free paths can be evaluated from
the corresponding kinetic equations via their widths Γν(ν̄) = −2ImΠR

ν(ν̄), where
ΠR is the retarded self-energy, or within the QPA for the nucleons they can
be also estimated via the squared matrix elements of the corresponding reac-
tions. Hence the processes which most efficiently contribute to the emissivity are
at early times (for T >∼ 1 MeV) also provide the dominant contribution to the
opacity.

In the above “nuclear medium cooling scenario” at T > Tc the most essential
contribution was from MMU. Taking into account the NN correlations in the
strong coupling vertices of two-nucleon processes like MMU and MNB suppresses
the rates, whereas the softening of the pion propagator essentially enhances them.
For rather massive NS MOPE wins the competition. The mean free path of
neutrino/antineutrino in MMU processes is determined from the same diagrams
(23) as the emissivity. Its calculation (see (24)) with the two first diagrams yields

λMMU
ν

R
� 1.5 · 105

F1(2Γ )8T 4
9

(
#0

#

)10/3
m4

N

(m∗
n)3m∗

p

[
αω̃π0(pFn)

mπ

]4 [
αω̃π±(pFn)

mπ

]4
. (36)

Using the relation λν � R one can evaluate Topac. Including only the first dia-
gram we get a simple estimate

T opac
9 � 11

#0

#

ω̃2(p2
Fn)

[4γ(gnn, 0, pFn)γ̃(g′, 0, pFn)]1/2

mN

m∗
N

. (37)

For averaged value of the density # � #0 corresponding to a medium-heavy
NS (< 1.4M�) with ω̃2(pFn) � 0.8m2

π, γ̃ � γ � (0.3 ÷ 0.4) we get Topac �
(1 ÷ 1.5) MeV that is smaller then the value Topac � 2 MeV estimated with
FOPE [6]. For # � 2#0 which corresponds to a more massive NS we estimate as
Topac � (0.3 ÷ 0.5) MeV. Thus pion softening results in a substantial decrease
of neutrino/antineutrino mean free paths and the value of Topac.

The diffusion equation determines the characteristic time scale for the
heat transport of neutrinos from the hot zone to the star surface t0 ∼
R2CV σ−1T−3/λν (σ is the Stefan–Boltzmann constant), for which we find the
estimate t0 ∼10 min. at T � 10 MeV and # � #0 for the values of parameters
ω̃2 � 0.8mπ, Γ � 0.4, m∗

N/mN � 0.9; t0 becomes as large as several hours for
# � (2 ÷ 3)#0. These estimates demonstrate that more massive NS cool down
more slowly at T > Topac and faster at subsequent times than the less massive
stars.
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Due to the in-medium effects neutrino scattering cross section on the neu-
trons shown by the first diagram (17) requires the NN correlation factor

γ2
nν(ω, q) =

γ2(fnn, ω, q) + 3g2
Aγ

2(gnn, ω, q)
1 + 3g2

A

, (38)

as follows from Urca (15). This results in a suppression of the cross sections
for ω < qvFn and in an enhancement for ω > qvFn. Neutrino scattering cross
sections on the protons are modified by

γ2
pν(ω, q) =

κ2(fnp, fnn, ω, q) + 3g2
Aγ

2
pp(gnn, ω, q)

1 + 3g2
A

, (39)

that results in the same order of magnitude correction as given by (38).
Also there is a suppression of the νN scattering and MNB reaction rates

for soft neutrinos (ω <∼ (3÷ 6)T ) due to multiple NN collisions

...
� �

�
� �
� � � �

(40)

(LPM effect). One may estimate these effects simply multiplying squared ma-
trix elements of the νN scattering and the MNB processes by the correspond-
ing suppression pre-factors [28]. Qualitatively one may use a general pre-factor
C0(ω) = ω2/[ω2 +Γ 2

N ], where ΓN is the nucleon width and the ω is the energy of
ν or νν̄ pair. In some works, see [82,83], correction factor, like C0, was suggested
at an ansatz level. Actually one does not need any ansatz type reductions. OTF,
see [28], allows to calculate the rates using an exact sum rule. The modification
of the charged current processes due to LPM effect is unimportant since the
corresponding value of ω is � pFe � ΓN .

The main physical result we discussed is that in the medium the reaction
rates are essentially modified. A suppression arises due to NN correlations (for
ω 	 kvFN ) and infra-red pre-factors (coherence effects), and an enhancement
due to the pion softening (and NN correlations for ω ∼ q) and due to opening
up of new efficient reaction channels. The pion softening demonstrates that al-
ready for densities # < #0 the nucleon system begins to feel that it may have
π condensate phase transition for # > #cπ, although this #cπ value might be
essentially larger than #0 or even not achieved.

4 The rate of radiation from dense medium. OTF

Perturbative diagrams are obviously irrelevant for calculation of in-medium pro-
cesses and one should deal with dressed Green functions. The QPA for fermions
is applicable if the fermion width is much less than all the typical energy scales
essential in the problem (ΓF 	 ωch). In calculation of the emissivities of νν̄ reac-
tions the minimal scale is ωch � 6T , averaged νν̄ energy for MNB reactions. For
MMU ωch � pFe. For radiation of soft quanta of fixed energy ω < T , ωch � ω.
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Within the QPA for fermions, the reaction rate with participation of the fermion
and the boson is given by [22,23]

�

�

� (41)

For equilibrium (T �= 0) system there is the exact relation

(< ϕ̂†
2ϕ̂1 >)(p) = iD−++ | ϕc |2=

AB

exp( ω
T )− 1

+ | ϕc |2, AB = −2ImDR, (42)

where (< ϕ̂†
2ϕ̂1 >)(p) means the Fourier component of the corresponding non-

equilibrium Green function and ϕc is the mean field. Thus the rate of the reaction
is related to the boson spectral function AB and the width (ΓB) being determined
by the corresponding Dyson equation, see Urca (9). AB is the delta-function at
the spectrum branches related to resonance processes, like zero sound. The poles
associated with the upper branches do not contribute at small temperatures due
to a tiny thermal population of those branches. There is also a contribution to
ImDR proportional to ImΠR given by the particle-hole diagram. Within the
QPA taking Im part means the cut of the diagram. Thus we show [23] that this
contribution is the same as that could be calculated with the help of the squared
matrix element of the two-nucleon process

nucleon process

D
R

�

� (43)

This is precisely what one could expect using optical theorem. Thus unlimited
series of all possible diagrams with in-medium Green functions (see (17), (31),
(33), (34)) together with two-fermion diagrams (as given by (23)) and multiple-
fermion diagrams (like (40)) would lead us to a double counting. The reason
is that permitting the boson width effects (and beyond the QPA for fermions
also permitting finite fermion widths) the difference between one-fermion, two-
fermion and multiple-fermion processes in medium is smeared out. All the states
are allowed and participate in production and absorption processes. Staying with
the QP picture for fermions, the easiest way to avoid mentioned double counting
is to calculate the reaction rates according to (41), i.e. with the help of the
diagrams of the DU-like type, which already include all the contributions of the
two-nucleon origin. Multiple NN collision processes should be added separately.
On the other hand, it is rather inconvenient to explicitly treat all one-nucleon
processes dealing with different specific quanta instead of using of the full NN
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interaction amplitude whenever it is possible. Besides, as we have mentioned,
consideration of open fermion legs is only possible within the QPA for fermions
since Feynman technique is not applicable if Green functions of ingoing and
outgoing fermions have widths (that in another language means possibility of
additional processes). Thus in [24,28] the idea was put forward to integrate over
all in-medium states allowing all possible processes instead of specifying different
special reaction channels.

In [24,28,27] it was shown that OTF in terms of full non-equilibrium Green
functions is an efficient tool to calculate the reaction rates including finite par-
ticle widths and other in-medium effects. Applying this approach, e.g., to the
antineutrino–lepton (electron, μ− meson, or neutrino) production [24] we can
express the transition probability in a direct reaction in terms of the evolution
operator S,

dWtot
X→ν̄l

dt
=

(1− nl)dq3
l dq

3
ν̄

(2π)6 4ωl ων̄

∑
{X}

< 0|S† |ν̄l + X >< ν̄l + X|S |0 > , (44)

where we presented explicitly the phase-space volume of ν̄l states; lepton occu-
pations of given spin, nl, are put zero for ν and ν̄ which are supposed to be
radiated directly from the system (for T < Topac). The bar denotes statistical
averaging. The summation goes over complete set of all possible intermediate
states {X} constrained by the energy-momentum conservation. It was also sup-
posed that electrons/muons can be treated in the QPA, i.e. with zero widths.
Then there is no need (although it is possible) to consider them in intermediate
reaction states. Making use of the smallness of the weak coupling, we expand the
evolution operator as S ≈ 1 − i

∫ +∞
−∞ T

{
VW (x)Snucl(x)

}
dx0 , where VW is the

Hamiltonian of the weak interaction in the interaction representation, Snucl is the
part of the S matrix corresponding to the nuclear interaction, and T{...} is the
chronological ordering operator. After substitution into (44) and averaging over
the arbitrary non-equilibrium state of a nuclear system, there appear chronolog-
ically ordered (G−−), anti-chronologically ordered (G++) and disordered (G+−

and G−+) exact Green functions.
In graphical form the general expression for the probability of the lepton

(electron, muon, neutrino) and anti-neutrino production is as follows

��

l

l

��

� ��

representing the sum of all closed diagrams (−iΠ−+) containing at least one
(−+) exact Green function. The latter quantity is especially important. Various
contributions from {X} can be classified according to the number N of G−+

lines in the diagram
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dWtot
ν̄l

dt
=

(1− nl)d3qν̄dq
3
l

(2π)6 4ων̄ ωl

�
N � �

��

l

l

��

� � � N � �

��

l

l

��

� � � � �

�
. (45)

This procedure suggested in [24] is actually very helpful especially if the QPA
holds for the fermions. Then contributions of specific processes contained in a
closed diagram can be made visible by cutting the diagrams over the (+−),
(−+) lines. In the framework of the QPA for the fermions G−+ = 2πinF δ(ε +
μ − ε0

p − ReΣR(ε + μ,p)) (nF are fermionic occupations, for equilibrium nF =
1/[exp((ε−μF )/T )+1]), and the cut eliminating the energy integral thus requires
clear physical meaning. This way one establishes the correspondence between
closed diagrams and usual Feynman amplitudes although in general case of finite
fermion width the cut has only a symbolic meaning. Next advantage is that in
the QPA any extra G−+, since it is proportional to nF , brings a small (T/εF )2

factor to the emissivity of the process. Dealing with small temperatures one can
restrict oneself to the diagrams of the lowest order in (G−+G+−), not forbidden
by energy-momentum conservations, putting T = 0 in all G++ and G−− Green
functions. Each diagram in (45) represents a whole class of perturbative diagrams
of any order in the interaction strength and in the number of loops.

Proceeding further we may explicitly decompose the first term in (45) as

N � �

��

l

l

��

� � �

��

l

l

��

� � �

��

l

l

��

� � �

� �

(46)

The full vertex in the diagram (46) of given sign is irreducible with respect to the
(+−) and (−+) nucleon–nucleon hole lines. This means it contains only the lines
of given sign, all (−−) or (++). Second diagram with anomalous Green functions
exists only for systems with pairing. In the framework of the QPA in fact these
diagrams determine the proper DU and also NPBF processes calculated in [24,25]
within OTF. In the QP picture the contribution to DU process vanishes for
# < #cU . Then the second term (45) comes into play which within the same QP
picture contains two-nucleon processes with one (G−+G+−) loop in intermediate
states, etc.

The full set of diagrams for Π−+ can be further explicitly decomposed as
series [28] (from now on using brief notations)
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Full dot is the weak coupling vertex including all the diagrams of one sign,
NN interaction block is the full block also of one sign diagrams. The lines
are full Green functions with the widths. The most essential term is the one-
loop diagram (see (46)), which is positive definite, and including the fermion
width corresponds to the first term of the classical Langevin result, for details
see [28]. Other diagrams represent interference terms due to rescatterings. In
some simplified representations (e.g., as we used within Fermi liquid theory)
the 4-point functions (blocks of NN interaction of given sign diagrams) behave
like intermediate bosons (e.g. zero-sounds and dressed pions). In general it is
not necessary to consider different quanta dealing instead with the full NN
interaction (all diagrams of given sign). For particle propagation in an external
field, e.g. infinitely heavy scattering centers (proper LPM effect), only the one-
loop diagram remains, since one deals then with a genuine one-body problem. In
the quasiclassical limit for fermions (with small occupations nF ) all the diagrams
given by first line of series (47) with arbitrary number of “−+” lines are summed
up leading to the diffusion result, for details see [28]. For small momenta q this
leads to a suppression factor of the form C = ω2/(ω2 + Γ 2

x ), Γx incorporates
rescattering processes. In general case the total radiation rate is obtained by
summation of all diagrams in (47). The value −iΠ−+ determines the gain term
in the generalized kinetic equation for G−+, see [84,85], that allows to use this
method in non-equilibrium problems, like for description of neutrino transport in
semi-transparent region of the neutrino-sphere of supernovas, as we may expect.

In the QP limit diagrams 1, 2, 4 and 5 of (47) correspond to the MMU and
MNB processes related to a single in-medium scattering of two fermionic QP
and can be symbolically expressed as Feynman amplitude (48a)

(a) � �
� � � �

(b)

�
�

�
�� �

� �
�
�

�

�

(c)
� �

�
� �
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(d)
�� 	


�

�

�

��� (48)

The one-loop diagram in (47) is particular, since its QP approximation in
many cases vanishes as we have mentioned. However the full one-loop includes
QP graphs of the type (48b), which survive to the same order in ΓN/ωch as
the other diagrams (therefore in [24] where QP picture was used this diagram
was considered as allowed diagram). In QP series such a term is included in
second diagram of (45) although beyond the QPA it is included as the proper
self-energy insertion to the one-loop result, i.e. in first term (45) [28]. In fact it is
positive definite and corresponds to the absolute square of the amplitude (48a).
The other diagrams 2, 4 and 5 of (47) describe the interference of amplitude
(48a) either with those amplitudes where the weak coupling quantum (lν̄ pair)
couples to another leg or with one of the exchange diagrams. For neutral inter-
actions diagram (47:2) is more important than diagram 4 while this behavior
reverses for charge exchange interactions (the latter is important, e.g., for gluon
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radiation from quarks in QCD transport due to color exchange interactions).
Diagrams like 3 describe the interference terms due to further rescatterings of
the source fermion with others as shown by (48c). Diagram (47:6) describes the
production from intermediate states and relates to the Feynman graph (48d).
For photons in the soft limit (ω 	 εF ) this diagram (48d) gives a smaller contri-
bution to the photon production rate than the diagram (48a), where the normal
bremsstrahlung contribution diverges like 1/ω compared to the 1/εF –value typ-
ical for the coupling to intermediate fermion lines. For νν̄ bremsstrahlung (48d)
gives zero due to symmetry. However in some cases the process (48d) might be
very important even in the soft limit. This is indeed the case for the MMU pro-
cess considered above. Some of the diagrams which are not presented explicitly
in (47) give more than two pieces, if being cut, so they never reduce to the
Feynman amplitudes. However in the QPA they give zero contribution [28].

With ΓF ∼ π2T 2/εF for Fermi liquids, the criterion ΓF 	 ωch ∼ T is satis-
fied for all thermal excitations Δε ∼ T 	 εF /π

2. However with the application
to soft radiation this concept is no longer justified. Indeed series of QP diagrams
is not convergent in the soft limit and there is no hope to ever recover a reliable
result by a finite number of QP diagrams for the production of soft quanta. With
full Green functions, however, one obtains a description that uniformly covers
both the soft (ω 	 ΓF ) and the hard (ω � ΓF ) regimes. In the vicinity of #cπ

the quantity ΓF being roughly estimated in [62,64] as ΓF ∝ π2Γ 2Tmπ/ω̃, and
coherence effects come into play.

In order to correct QP evaluations of different diagrams by the fermion
width effects for soft radiating quanta one can simply multiply the QP results
by different pre-factors [28]. E.g., comparing the one-loop result at non-zero
ΓF with the first non-zero diagram in the QPA (ΓF = 0 in the fermion Green
functions) we get

�
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QPA

, (49)

at small momentum q. For the next order diagrams we have�
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, C0(ω) =
ω2

ω2 + Γ 2
F

. (50)

where factors C0, C1, ... cure the defect of the QPA for soft ω. The factor C0
complies with the replacement ω → ω + iΓF . A similar factor is observed in the
diffusion result, where however the macroscopic relaxation rate Γx enters, due
to the resummation of all rescattering processes.
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Finally, we demonstrated how to calculate the rates of different reactions in
dense equilibrium and non-equilibrium matter and compared the results derived
in closed diagram technique with those obtained in the standard technique of
computing of the squared matrix elements.

5 Cooling of Hybrid Neutron Stars

Let us in addition review how the color superconducting quark matter, if exists in
interiors of massive NS, may affect the neutrino cooling of HNS, [53]. A detailed
discussion of the neutrino emissivity of quark matter without taking into account
of the possibility of the color superconductivity has been given first in ref. [86].
In this work the quark direct Urca (QDU) reactions d→ ueν̄ and ue→ dν have
been suggested as the most efficient processes. In the color superconducting
matter the corresponding expression for the emissivity modifies as

εQDU
ν � 9.4× 1026αs(#/#0)Y 1/3

e ζQDU T 6
9 erg cm−3 s−1, (51)

where due to the pairing the emissivity of QDU processes is suppressed by a
factor, very roughly given by ζQDU ∼ exp(−Δq/T ). At #/#0 � 2 the strong
coupling constant is αs ≈ 1 decreasing logarithmically at still higher densities,
Ye = #e/# is the electron fraction. If for somewhat larger density the electron
fraction was too small (Ye < Yec � 10−8), then all the QDU processes would
be completely switched off [87] and the neutrino emission would be governed
by two-quark reactions like the quark modified Urca (QMU) and the quark
bremsstrahlung (QB) processes dq → uqeν̄ and q1q2 → q1q2νν̄, respectively.
The emissivities of QMU and QB processes are smaller than that for QDU being
suppressed by factor ζQMU ∼ exp(−2Δq/T ) for T < Tcrit,q � 0.4 Δq. For T >
Tcrit,q all the ζ factors are equal to unity. The modification of Tcrit,q(Δq) relative
to the standard BCS formula is due to the formation of correlations as, e.g.,
instanton- anti-instanton molecules. The contribution of the reaction ee→ eeνν̄
to the emissivity is very small [88], εee

ν ∼ 1012 Y
1/3
e (#/#0)1/3T 8

9 erg cm−3 s−1,
but it can become important when quark processes are blocked out for large
values of Δq/T in superconducting quark matter.

For the quark specific heat [53] used expression of [86] being however sup-
pressed by the corresponding ζ factor due to color superfluidity. Therefore gluon-
photon and electron contributions play important role.

The heat conductivity of the matter is the sum of partial contributions
κ =

∑
i κi, κ−1

i =
∑

j κ
−1
ij , where i, j denote the components (particle species).

For quark matter κ is the sum of the partial conductivities of the electron,
quark and gluon components κ = κe + κq + κg, where κe � κee is determined
by electron-electron scattering processes since in superconducting quark matter
the partial contribution 1/κeq (as well as 1/κgq ) is additionally suppressed by
a ζQDU factor, as for the scattering on impurities in metallic superconductors.
Due to very small resulting value of κ the typical time necessary for the heat to
reach the star surface is large, delaying the cooling of HNS.
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EoS used in ref. [53] included a model of the hadronic matter, region of
mixed phase and of pure quark matter. A hard EoS for the hadronic matter
was used, finite size effects were disregarded in description of the mixed phase,
and the bag constant B was taken to be rather small that led to the presence
of a wide region of mixed and quark phases already for the HNS of the mass
M = 1.4 M�. On the other hand, absence of a dense hadronic region within
this EoS allowed to diminish uncertainties in description of in-medium effects
in hadronic matter suppressing them according to that used in the “standard
scenario”.

With the above inputs ref. [53] solved the evolution equation for the tem-
perature profile. In order to demonstrate the influence of the size of the diquark
and nucleon pairing gaps on the evolution of the temperature profile solutions
were performed with different values of the quark and nucleon gaps. Comparison
of the cooling evolution (lg Ts vs. lg t) of HNS of the mass M = 1.4 M� is given
in Fig. 7. The curves for Δq

>∼ 1 MeV are very close to each other demonstrating
typical large gap behavior. The behavior of the cooling curve for t ≤ 50÷ 100 yr
is in straight correspondence with the heat transport processes. The subsequent
time evolution is governed by the processes in the hadronic shell and by a de-
layed transport within the quark core with a dramatically suppressed neutrino
emissivity from the color superconducting region. In order to demonstrate this
feature a calculation was performed with the nucleon gaps (Δi(n), i = n, p) be-
ing artificially suppressed by a factor 0.2. Then up to lg(t[yr]) <∼ 4 the behavior
of the cooling curve is analogous to the one would be obtained for pure hadronic
matter. The curves labelled “MMU” show the cooling of hadronic matter with
inclusion of appropriate medium modifications in the NN interaction. These
effects have an influence on the cooling evolution only for lg(t[yr]) <∼ 2 since the
specific model EoS used does not allow for high nucleon densities in the hadronic
phase at given example of HNS of M = 1.4 M�. The effect would be much more
pronounced for larger star masses, a softer EoS for hadronic matter and smaller
values of the gaps in the hadronic phase. Besides, incorporation of finite size
effects within description of the mixed phase reducing its region should enlarge
the size of the pure hadronic phase.

The unique asymptotic behavior at lg(t[yr]) ≥ 5 for all the curves corre-
sponding to finite values of the quark and nucleon gaps is due to a competition
between normal electron contribution to the specific heat and the photon emis-
sivity from the surface since small exponentials switch off all the processes related
to paired particles. This tail is very sensitive to the interpolation law Ts = f(Tm)
used to simplify the consideration of the crust. The curves coincide at large times
due to the uniquely chosen relation Ts ∝ T

2/3
m .

The curves for Δq = 0.1 MeV demonstrate an intermediate cooling behavior
between those for Δq = 50 MeV and Δq = 0. Heat transport becomes not
efficient after first 5 ÷ 10 yr. The subsequent 104 yr evolution is governed by
QDU processes and quark specific heat being only moderately suppressed by
the gaps and by the rates of NPBF processes in the hadronic matter (up to
lg(t[yr]) ≤ 2.5). At lg(t[yr]) ≥ 4 begins the photon cooling era.
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Fig. 7. Evolution of the surface temperature Ts of HNS with M = 1.4M� for Ts =
(10Tm)2/3, where T is in K, see [8]. Data are from [26] (full symbols) and from [35]
(empty symbols), tw is the typical time which is necessary for the cooling wave to pass
through the crust.

The curves for normal quark matter (Δq = 0) are governed by the heat
transport at times t <∼ 5 yr and then by QDU processes and the quark specific
heat. The NPBF processes are important up to lg(t[yr]) ≤ 2, the photon era
is delayed up to lg(t[yr]) ≥ 7. For times smaller than tw (see Fig. 7) the heat
transport is delayed within the crust area [15]. Since for simplicity this delay
was disregarded in the heat transport treatment, for such small times the curves
should be interpreted as the Tm(t) dependence scaled to guide the eye by the
same law ∝ T

2/3
m , as Ts.

For the CFL phase with large quark gap, which expected to exhibit the
most prominent manifestations of color superconductivity in HNS and QCNS,
[53] thus demonstrated an essential delay of the cooling during the first 50÷300
yr (the latter for QCNS) due to a dramatic suppression of the heat conductivity
in the quark matter region. This delay makes the cooling of HNS and QCNS
not as rapid as one could expect when ignoring the heat transport. In HNS
compared to QCNS (large gaps) there is an additional delay of the subsequent
cooling evolution which comes from the processes in pure hadronic matter.

In spite of that we find still too fast cooling for those objects compared to
ordinary NS. Therefore, with the CFL phase of large quark gap it seems rather
difficult to explain the majority of the presently known data both in the cases
of the HNS and QCNS, whereas in the case of pure hadronic stars the avail-
able data are much better fitted even within the same simplified model for the
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hadronic matter. For 2SC (3SC) phases one may expect analogous behavior to
that demonstrated by Δq = 0 since QDU processes on unpaired quarks are then
allowed, resulting in a fast cooling. It is however not excluded that new observa-
tions may lead to lower surface temperatures for some supernova remnants and
will be better consistent with the model which also needs further improvements.
On the other hand, if future observations will show very large temperatures for
young compact stars they could be interpreted as a manifestation of large gap
color superconductivity in the interiors of these objects.

Concluding, the “nuclear medium cooling scenario” allows easily to
achieve agreement with existing data. However there remains essential uncer-
tainty in quantitative predictions due to a poor knowledge, especially, of the
residual interaction treated above in an economical way within a phenomenolog-
ical Fermi liquid model which needs further essential improvements. As for color
superconductivity in HNS, QCNS, and QS, characterizing by large diquark pair-
ing gaps, we did not find an appropriate fit of existing X ray data. Situation will
be changed if more cold, old objects will be observed. Also, if young hot objects
( on scale ∼ 102 yr.) will be observed it could be interpreted as a signature of
CFL phase in these objects.
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